List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8203478/publications.pdf Version: 2024-02-01

IMMES E COLDMAN

#	Article	IF	CITATIONS
1	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	14.8	1,098
2	Loss of mTOR-Dependent Macroautophagy Causes Autistic-like Synaptic Pruning Deficits. Neuron, 2014, 83, 1131-1143.	8.1	863
3	Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nature Genetics, 2001, 27, 117-120.	21.4	611
4	αB-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell, 1989, 57, 71-78.	28.9	550
5	White matter changes in Alzheimer's disease: a focus on myelin and oligodendrocytes. Acta Neuropathologica Communications, 2018, 6, 22.	5.2	412
6	GFAP and its role in Alexander disease. Experimental Cell Research, 2007, 313, 2077-2087.	2.6	296
7	Efficient Generation of Myelinating Oligodendrocytes from Primary Progressive Multiple Sclerosis Patients by Induced Pluripotent Stem Cells. Stem Cell Reports, 2014, 3, 250-259.	4.8	266
8	COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital. Brain, 2021, 144, 2696-2708.	7.6	254
9	Alexander Disease. Journal of Neuroscience, 2012, 32, 5017-5023.	3.6	210
10	Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathologica Communications, 2020, 8, 19.	5.2	175
11	Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. Journal of Neuroscience Research, 1997, 48, 83-94.	2.9	161
12	Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell, 2022, 185, 1052-1064.e12.	28.9	154
13	Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. Journal of Neuroscience Research, 1999, 57, 435-446.	2.9	153
14	Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways. Human Molecular Genetics, 2008, 17, 1540-1555.	2.9	149
15	Phenotypic Heterogeneity and Plasticity of Isocortical and Hippocampal Astrocytes in the Human Brain. Journal of Neuroscience, 2014, 34, 2285-2298.	3.6	147
16	GFAP mutations in Alexander disease. International Journal of Developmental Neuroscience, 2002, 20, 259-268.	1.6	123
17	COVID-19 and possible links with Parkinson's disease and parkinsonism: from bench to bedside. Npj Parkinson's Disease, 2020, 6, 18	5.3	120
18	Astrocytes regulate GFAP mRNA levels by cyclic AMP and protein kinase C-dependent mechanisms. Glia, 1988, 1, 346-354.	4.9	119

#	Article	IF	CITATIONS
19	Coordinate and independent regulation of ?B-crystallin and HSP27 expression in response to physiological stress. Journal of Cellular Physiology, 1994, 159, 41-50.	4.1	119
20	Developmental fates and migratory pathways of dividing progenitors in the postnatal rat cerebellum. Journal of Comparative Neurology, 1996, 370, 536-550.	1.6	114
21	Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathologica Communications, 2020, 8, 147.	5.2	104
22	Interactions between glial progenitors and blood vessels during early postnatal corticogenesis: Blood vessel contact represents an early stage of astrocyte differentiation. , 1997, 387, 537-546.		92
23	Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter. Journal of Neurobiology, 2001, 48, 75-86.	3.6	92
24	Synergistic Effects of the SAPK/JNK and the Proteasome Pathway on Glial Fibrillary Acidic Protein (GFAP) Accumulation in Alexander Disease. Journal of Biological Chemistry, 2006, 281, 38634-38643.	3.4	89
25	Oligomers of Mutant Glial Fibrillary Acidic Protein (GFAP) Inhibit the Proteasome System in Alexander Disease Astrocytes, and the Small Heat Shock Protein αB-Crystallin Reverses the Inhibition. Journal of Biological Chemistry, 2010, 285, 10527-10537.	3.4	81
26	Alpha B-crystallin is associated with intermediate filaments in astrocytoma cells. Neurochemical Research, 1998, 23, 385-392.	3.3	74
27	Phenotypic Conversions of "Protoplasmic―to "Reactive―Astrocytes in Alexander Disease. Journal of Neuroscience, 2013, 33, 7439-7450.	3.6	72
28	Alexander Disease Mutant Glial Fibrillary Acidic Protein Compromises Glutamate Transport in Astrocytes. Journal of Neuropathology and Experimental Neurology, 2010, 69, 335-345.	1.7	70
29	Preferential expression of αB-crystallin in astrocytic elements of neuroectodermal tumors. Cancer, 1991, 68, 2230-2240.	4.1	69
30	Plectin Regulates the Organization of Glial Fibrillary Acidic Protein in Alexander Disease. American Journal of Pathology, 2006, 168, 888-897.	3.8	68
31	Lineage, migration, and fate determination of postnatal subventricular zone cells in the mammalian CNS. Journal of Neuro-Oncology, 1995, 24, 61-64.	2.9	67
32	In vivo characterization of endogenous proliferating cells in adult rat subcortical white matter. , 1996, 17, 39-51.		67
33	Tracing glial cell lineages in the mammalian forebrain. Clia, 1991, 4, 149-156.	4.9	62
34	Histopathological Differences Between the Anterior and Posterior Brain Arteries as a Function of Aging. Stroke, 2017, 48, 638-644.	2.0	53
35	Parkinsonian features of eight pathologically diagnosed cases of diffuse lewy body disease. Movement Disorders, 1995, 10, 188-194.	3.9	51
36	Astrocyte pathology in Alexander disease causes a marked inflammatory environment. Acta Neuropathologica, 2015, 130, 469-486.	7.7	48

#	Article	IF	CITATIONS
37	Brain arterial remodeling contribution to nonembolic brain infarcts in patients with HIV. Neurology, 2015, 85, 1139-1145.	1.1	47
38	Brain arterial aging and its relationship to Alzheimer dementia. Neurology, 2016, 86, 1507-1515.	1.1	47
39	Disorders of Astrocytes: Alexander Disease as a Model. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 131-152.	22.4	46
40	Direct comparison of microglial dynamics and inflammatory profile in photothrombotic and arterial occlusion evoked stroke. Neuroscience, 2017, 343, 483-494.	2.3	46
41	Alexander disease: an astrocytopathy that produces a leukodystrophy. Brain Pathology, 2018, 28, 388-398.	4.1	46
42	A Pathological Perspective on the Natural History of Cerebral Atherosclerosis. International Journal of Stroke, 2015, 10, 1074-1080.	5.9	42
43	Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander disease severity. ELife, 2019, 8, .	6.0	42
44	A reappraisal of ganglioside GD3 expression in the CNS. , 1996, 16, 291-295.		35
45	?B-crystallin in oxidative muscle fibers and its accumulation in ragged-red fibers: a comparative immunohistochemical and histochemical study in human skeletal muscle. Acta Neuropathologica, 1993, 85, 475-80.	7.7	34
46	αB-crystallin regulates intermediate filament organization in situ. NeuroReport, 2000, 11, 361-365.	1.2	34
47	Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. Journal of Proteome Research, 2016, 15, 2265-2282.	3.7	34
48	The Long-Term Persistence of Borrelia burgdorferi Antigens and DNA in the Tissues of a Patient with Lyme Disease. Antibiotics, 2019, 8, 183.	3.7	34
49	Somatic variants in diverse genes leads to a spectrum of focal cortical malformations. Brain, 2022, 145, 2704-2720.	7.6	33
50	Phosphorylation of α-crystallin B in Alexander's disease brain. FEBS Letters, 1991, 294, 133-136.	2.8	32
51	The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Acta Neuropathologica Communications, 2017, 5, 27.	5.2	31
52	Adaptive autophagy in Alexander disease-affected astrocytes. Autophagy, 2008, 4, 701-703.	9.1	30
53	Determinants of cerebrovascular remodeling: Do large brain arteries accommodate stenosis?. Atherosclerosis, 2014, 235, 371-379.	0.8	27
54	Modeling the natural history of Pelizaeus–Merzbacher disease. Neurobiology of Disease, 2015, 75, 115-130.	4.4	15

#	Article	IF	CITATIONS
55	Effects of traumatic brain injury on reactive astrogliosis and seizures in mouse models of Alexander disease. Brain Research, 2014, 1582, 211-219.	2.2	14
56	Cyclophilin D–dependent oligodendrocyte mitochondrial ion leak contributes to neonatal white matter injury. Journal of Clinical Investigation, 2020, 130, 5536-5550.	8.2	13
57	What are the characteristics of cycling cells in the adult central nervous system?. Journal of Cellular Biochemistry, 2003, 88, 20-23.	2.6	8
58	Pathological correlates of brain arterial calcifications. Cardiovascular Pathology, 2019, 38, 7-13.	1.6	8
59	Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. Journal of Neuroscience Research, 1999, 57, 435-446.	2.9	8
60	Abnormal mitosis in reactive astrocytes. Acta Neuropathologica Communications, 2020, 8, 47.	5.2	6
61	Case 1, 1989: Juvenile-onset parkinsonism, dystonia, and pyramidal tract signs. Movement Disorders, 1989, 4, 363-370.	3.9	5
62	Glial differentiation and lineages. Journal of Neuroscience Research, 2000, 59, 410-412.	2.9	5
63	Corticobasal syndrome with novel argyrophilic glial inclusions. Movement Disorders, 2005, 20, 598-602.	3.9	4
64	Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter. Journal of Neurobiology, 2001, 48, 75-86.	3.6	4
65	Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. Journal of Neuroscience Research, 1997, 48, 83-94.	2.9	3
66	Ganglioglioma with neurofibrillary tangles (NFTs): neoplastic NFTs share antigenic determinants with NFTs of Alzheimer's disease. Acta Neuropathologica, 1995, 89, 451-453.	7.7	3
67	Metabolic Enzyme Alterations and Astrocyte Dysfunction in a Murine Model of Alexander Disease With Severe Reactive Gliosis. Molecular and Cellular Proteomics, 2022, 21, 100180.	3.8	3
68	Meningomyeloencephalitis secondary to Mycobacterium haemophilum infection in AIDS. Acta Neuropathologica Communications, 2020, 8, 73.	5.2	2
69	Small heat shock protein speciation: novel non-canonical 44ÅkDa HspB5-related protein species in rat and human tissues. Cell Stress and Chaperones, 2018, 23, 813-826.	2.9	1
70	Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. , 0, .		1
71	Brain Tissue Donation in Research on Parkinsonism. Loss,grief & Care, 2000, 8, 69-71.	0.2	0
72	Coâ€existent pilocytic astrocytoma with acute Bâ€cell leukemia within the cerebellum. Neuropathology, 2019, 39, 394-397.	1.2	0

#	Article	IF	CITATIONS
73	Corticobasal Syndrome with TAR Binding Protein 43–Positive Oligodendrocyte Inclusions. Movement Disorders, 2022, 37, 1564-1565.	3.9	0
74	Alzheimer Type I Astrocytes: Still Mysterious Cells. Journal of Neuropathology and Experimental Neurology, 2022, 81, 588-595.	1.7	0