Robert VanBuren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8202221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science, 2014, 345, 1181-1184.	12.6	520
2	The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 2015, 47, 1435-1442.	21.4	472
3	Origin and evolution of the octoploid strawberry genome. Nature Genetics, 2019, 51, 541-547.	21.4	469
4	Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L Nature Genetics, 2018, 50, 1565-1573.	21.4	463
5	Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature, 2015, 527, 508-511.	27.8	291
6	Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. GigaScience, 2018, 7, 1-7.	6.4	209
7	Progress, challenges and the future of crop genomes. Current Opinion in Plant Biology, 2015, 24, 71-81.	7.1	197
8	Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. GigaScience, 2019, 8, .	6.4	167
9	The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytologist, 2018, 220, 87-93.	7.3	161
10	Representation and participation across 20 years of plant genome sequencing. Nature Plants, 2021, 7, 1571-1578.	9.3	151
11	Building near-complete plant genomes. Current Opinion in Plant Biology, 2020, 54, 26-33.	7.1	135
12	The genome of black raspberry (<i>Rubus occidentalis</i>). Plant Journal, 2016, 87, 535-547.	5.7	111
13	Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nature Communications, 2020, 11, 884.	12.8	101
14	Extreme haplotype variation in the desiccation-tolerant clubmoss Selaginella lepidophylla. Nature Communications, 2018, 9, 13.	12.8	89
15	Origin and domestication of papaya Y ^h chromosome. Genome Research, 2015, 25, 524-533.	5.5	87
16	A near complete, chromosome-scale assembly of the black raspberry (Rubus occidentalis) genome. GigaScience, 2018, 7, .	6.4	86
17	Transcriptome-Based Prediction of Complex Traits in Maize. Plant Cell, 2020, 32, 139-151.	6.6	80
18	Temporal and spatial transcriptomic and micro <scp>RNA</scp> dynamics of <scp>CAM</scp> photosynthesis in pineapple. Plant Journal, 2017, 92, 19-30.	5.7	78

Robert VanBuren

#	Article	IF	CITATIONS
19	Subgenome assignment in allopolyploids: challenges and future directions. Current Opinion in Plant Biology, 2018, 42, 76-80.	7.1	71
20	The bracteatus pineapple genome and domestication of clonally propagated crops. Nature Genetics, 2019, 51, 1549-1558.	21.4	60
21	Time of day and network reprogramming during drought induced CAM photosynthesis in Sedum album. PLoS Genetics, 2019, 15, e1008209.	3.5	59
22	Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid <i>Brassica napus</i> . New Phytologist, 2021, 230, 354-371.	7.3	57
23	Massive Tandem Proliferation of ELIPs Supports Convergent Evolution of Desiccation Tolerance across Land Plants. Plant Physiology, 2019, 179, 1040-1049.	4.8	54
24	Desiccation Tolerance Evolved through Gene Duplication and Network Rewiring in <i>Lindernia</i> . Plant Cell, 2018, 30, 2943-2958.	6.6	53
25	Lycophyte plastid genomics: extreme variation in <scp>GC</scp> , gene and intron content and multiple inversions between a direct and inverted orientation of the <scp>rRNA</scp> repeat. New Phytologist, 2019, 222, 1061-1075.	7.3	51
26	Chromosome-scale scaffolding of the black raspberry (Rubus occidentalis L.) genome based on chromatin interaction data. Horticulture Research, 2018, 5, 8.	6.3	50
27	Seed desiccation mechanisms coâ€opted for vegetative desiccation in the resurrection grass <i>Oropetium thomaeum</i> . Plant, Cell and Environment, 2017, 40, 2292-2306.	5.7	49
28	Intertwined signatures of desiccation and drought tolerance in grasses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10079-10088.	7.1	40
29	A chromosomeâ€scale assembly of the model desiccation tolerant grass <i>Oropetium thomaeum</i> . Plant Direct, 2018, 2, e00096.	1.9	39
30	A genetic linkage map of black raspberry (Rubus occidentalis) and the mapping of Ag 4 conferring resistance to the aphid Amphorophora agathonica. Theoretical and Applied Genetics, 2015, 128, 1631-1646.	3.6	35
31	Evolutionary innovations driving abiotic stress tolerance in C4 grasses and cereals. Plant Cell, 2021, 33, 3391-3401.	6.6	33
32	Unexplored dimensions of variability in vegetative desiccation tolerance. American Journal of Botany, 2021, 108, 346-358.	1.7	32
33	Composite modeling of leaf shape along shoots discriminates <i>Vitis</i> species better than individual leaves. Applications in Plant Sciences, 2020, 8, e11404.	2.1	29
34	<i>Fusarium virguliforme</i> Transcriptional Plasticity Is Revealed by Host Colonization of Maize versus Soybean. Plant Cell, 2020, 32, 336-351.	6.6	28
35	Veinâ€ŧoâ€blade ratio is an allometric indicator of leaf size and plasticity. American Journal of Botany, 2021, 108, 571-579.	1.7	28
36	SunUp and Sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya. Nature Genetics, 2022, 54, 715-724.	21.4	26

Robert VanBuren

#	Article	IF	CITATIONS
37	The contributions from the progenitor genomes of the mesopolyploid Brassiceae are evolutionarily distinct but functionally compatible. Genome Research, 2021, 31, 799-810.	5.5	21
38	Desiccation tolerance: Seedy origins of resurrection. Nature Plants, 2017, 3, 17046.	9.3	20
39	Organelle DNA accumulation in the recently evolved papaya sex chromosomes. Molecular Genetics and Genomics, 2013, 288, 277-284.	2.1	18
40	Dynamic transposable element accumulation in the nascent sex chromosomes of papaya. Mobile Genetic Elements, 2013, 3, e23462.	1.8	16
41	Arabidopsis defense mutant ndr1-1 displays accelerated development and early flowering mediated by the hormone gibberellic acid. Plant Science, 2019, 285, 200-213.	3.6	9
42	Longli is not a Hybrid of Longan and Lychee as Revealed by Genome Size Analysis and Trichome Morphology. Tropical Plant Biology, 2011, 4, 228-236.	1.9	8
43	GingerRoot: A Novel DNA Transposon Encoding Integrase-Related Transposase in Plants and Animals. Genome Biology and Evolution, 2019, 11, 3181-3193.	2.5	8
44	Expression dynamics of dehydration tolerance in the tropical plant <i>Marchantia inflexa</i> . Plant Journal, 2021, 105, 209-222.	5.7	8
45	Genetic and genomic resources to study natural variation in <i>Brassica rapa</i> . Plant Direct, 2020, 4, e00285.	1.9	8
46	Diversification, spread, and admixture of octoploid strawberry in the Western Hemisphere. American Journal of Botany, 2021, 108, 2269-2281.	1.7	8
47	A comparative genomics examination of desiccation tolerance and sensitivity in two sister grass species. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
48	Leveraging millets for developing climate resilient agriculture. Current Opinion in Biotechnology, 2022, 75, 102683.	6.6	8
49	Balancing selection contributed to domestication of autopolyploid sugarcane (Saccharum) Tj ETQq1 1 0.78431	4 rgBT /O\ 1.2	verlgck 10 Tf 5
50	Secretome Prediction and Analysis in Sacred Lotus (Nelumbo nucifera Gaertn.). Tropical Plant Biology, 2013, 6, 131-137.	1.9	6
51	Circadian Regulation of Pineapple CAM Photosynthesis. Plant Genetics and Genomics: Crops and Models, 2018, , 247-258.	0.3	5
52	Variability in Functional Traits along an Environmental Gradient in the South African Resurrection Plant Myrothamnus flabellifolia. Plants, 2022, 11, 1332.	3.5	3