Cornelia Rumpel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8201565/publications.pdf Version: 2024-02-01

	17440	15732
17,784	63	125
citations	h-index	g-index
224	224	15104
234	234	15184
docs citations	times ranked	citing authors
	citations 234	17,784 63 citations h-index 234 234

#	Article	IF	CITATIONS
1	Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 2022, 52, 4308-4324.	12.8	52
2	Editorial: Carbon Storage in Agricultural and Forest Soils. Frontiers in Environmental Science, 2022, 10, .	3.3	3
3	Phosphorus fertiliser source determines the allocation of root-derived organic carbon to soil organic matter fractions. Soil Biology and Biochemistry, 2022, 167, 108614.	8.8	7
4	Interactions between soils and climate change. , 2022, , .		0
5	Mechanisms and kinetics of (de-)protection of soil organic carbon in earthworm casts in a tropical environment. Soil Biology and Biochemistry, 2022, 170, 108686.	8.8	5
6	Faeces traits as unifying predictors of detritivore effects on organic matter turnover. Geoderma, 2022, 422, 115940.	5.1	9
7	The role of soil carbon sequestration in enhancing human resilience in tackling global crises including pandemics. Soil Security, 2022, 8, 100069.	2.3	6
8	Pyrolysis-GCMS as a Tool for Maturity Evaluation of Compost from Sewage Sludge and Green Waste. Waste and Biomass Valorization, 2021, 12, 2639-2652.	3.4	9
9	Mid-infrared spectroscopy to trace biogeochemical changes of earthworm casts during ageing under field conditions. Geoderma, 2021, 383, 114811.	5.1	4
10	Carbon Mineralization Controls in Top- and Subsoil Horizons of Two Andisols Under Temperate Old-Growth Rain Forest. Journal of Soil Science and Plant Nutrition, 2021, 21, 780-790.	3.4	1
11	Site-Specific Effects of Organic Amendments on Parameters of Tropical Agricultural Soil and Yield: A Field Experiment in Three Countries in Southeast Asia. Agronomy, 2021, 11, 348.	3.0	9
12	Biochar-Compost Interactions as Affected by Weathering: Effects on Biological Stability and Plant Growth. Agronomy, 2021, 11, 336.	3.0	11
13	Mid-infrared spectroscopy of earthworm bodies to investigate their species belonging and their relationship with the soil they inhabit. Applied Soil Ecology, 2021, 162, 103894.	4.3	1
14	Anecic earthworms generate more topsoil than they contribute to erosion – Evidence at catchment scale in northern Vietnam. Catena, 2021, 201, 105186.	5.0	13
15	Closing Biogeochemical Cycles and Meeting Plant Requirements by Smart Fertilizers and Innovative Organic Amendments. Agronomy, 2021, 11, 1158.	3.0	3
16	Spatial heterogeneity of soil quality within a Mediterranean alley cropping agroforestry system: Comparison with a monocropping system. European Journal of Soil Biology, 2021, 105, 103330.	3.2	22
17	Managing Soil Organic Carbon for Mitigating Climate Change and Increasing Food Security. Agronomy, 2021, 11, 1553.	3.0	12
18	Effect of decomposition products produced in the presence or absence of epigeic earthworms and minerals on soil carbon stabilization. Soil Biology and Biochemistry, 2021, 160, 108308.	8.8	10

#	Article	IF	CITATIONS
19	Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air, Soil and Water Research, 2021, 14, 117862212110281.	2.5	53
20	Do grassland management practices affect soil lignin chemistry by changing the composition of plant-derived organic matter input?. Plant and Soil, 2021, 469, 443-455.	3.7	4
21	Does the Introduction of N2-Fixing Trees in Forest Plantations on Tropical Soils Ameliorate Low Fertility and Enhance Carbon Sequestration via Interactions Between Biota and Nutrient Availability? Case Studies From Central Africa and South America. Frontiers in Soil Science, 2021, 1, .	2.2	6
22	Soil Organic Matter Stocks and Content—Critical Policy Issues?. , 2021, , 191-203.		0
23	Response to "The "4p1000―initiative: A new name should be adopted―by Baveye and White (2019). A 2020, 49, 363-364.	mbio,	2
24	The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio, 2020, 49, 350-360.	5.5	208
25	Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Science of the Total Environment, 2020, 704, 135460.	8.0	47
26	Microplastics from lagooning sludge to composts as revealed by fluorescent staining- image analysis, Raman spectroscopy and pyrolysis-GC/MS. Journal of Environmental Management, 2020, 275, 111249.	7.8	65
27	Management of grasslands by mowing versus grazing – impacts on soil organic matter quality and microbial functioning. Applied Soil Ecology, 2020, 156, 103701.	4.3	40
28	Research for development in the 21st century. Geoderma, 2020, 378, 114558.	5.1	1
29	Towards a global-scale soil climate mitigation strategy. Nature Communications, 2020, 11, 5427.	12.8	302
30	Paris Climate Agreement: Promoting Interdisciplinary Science and Stakeholders' Approaches for Multi-Scale Implementation of Continental Carbon Sequestration. Sustainability, 2020, 12, 6715.	3.2	7
31	Silicon Modulates the Production and Composition of Phenols in Barley under Aluminum Stress. Agronomy, 2020, 10, 1138.	3.0	21
32	Promoting plant growth and carbon transfer to soil with organic amendments produced with mineral additives. Geoderma, 2020, 374, 114454.	5.1	13
33	Chemical parameters of decomposing dung in tropical forest as indicators of feeding behaviour of large herbivores: A step beyond classical stoichiometry. Ecological Indicators, 2020, 115, 106407.	6.3	6
34	Soil available P, soil organic carbon and aggregation as affected by long-term poultry manure application to Andisols under pastures in Southern Chile. Geoderma Regional, 2020, 21, e00271.	2.1	15
35	Age matters: Fate of soil organic matter during ageing of earthworm casts produced by the anecic earthworm Amynthas khami. Soil Biology and Biochemistry, 2020, 148, 107906.	8.8	17
36	How do earthworms affect organic matter decomposition in the presence of clay-sized minerals?. Soil Biology and Biochemistry, 2020, 143, 107730.	8.8	31

#	Article	IF	CITATIONS
37	Inferring the impact of earthworms on the stability of organo-mineral associations, by Rock-Eval thermal analysis and 13C NMR spectroscopy. Organic Geochemistry, 2020, 144, 104016.	1.8	11
38	Monitoring Grassland Management Effects on Soil Organic Carbon—A Matter of Scale. Agronomy, 2020, 10, 2016.	3.0	11
39	Land-use perturbations in ley grassland decouple the degradation of ancient soil organic matter from the storage of newly derived carbon inputs. Soil, 2020, 6, 435-451.	4.9	5
40	Optimization of wheat straw co-composting for carrier material development. Waste Management, 2019, 98, 37-49.	7.4	26
41	Soils linked to climate change. Nature, 2019, 572, 442-443.	27.8	16
42	Microbial succession on decomposing root litter in a drought-prone Scots pine forest. ISME Journal, 2019, 13, 2346-2362.	9.8	84
43	Synergistic and Antagonistic Effects of Poultry Manure and Phosphate Rock on Soil P Availability, Ryegrass Production, and P Uptake. Agronomy, 2019, 9, 191.	3.0	16
44	Grassland Management Influences the Response of Soil Respiration to Drought. Agronomy, 2019, 9, 124.	3.0	19
45	Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environment International, 2019, 125, 478-488.	10.0	135
46	Stable carbon isotopic composition of dissolved inorganic carbon (DIC) as a driving factor of aquatic plants organic matter build-up related to salinity. Ecological Indicators, 2019, 99, 230-239.	6.3	11
47	Fertilizer P Uptake Determined by Soil P Fractionation and Phosphatase Activity. Journal of Soil Science and Plant Nutrition, 2019, 19, 166-174.	3.4	28
48	Plant–Soil Interactions Control CNP Coupling and Decoupling Processes in Agroecosystems With Perennial Vegetation. , 2019, , 3-13.		7
49	Sodium silicate and calcium silicate differentially affect silicon and aluminium uptake, antioxidant performance and phenolics metabolism of ryegrass in an acid Andisol. Crop and Pasture Science, 2018, 69, 205.	1.5	24
50	Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development, 2018, 38, 1.	5.3	159
51	Smart Fertilizers as a Strategy for Sustainable Agriculture. Advances in Agronomy, 2018, 147, 119-157.	5.2	158
52	Effect of in-situ aged and fresh biochar on soil hydraulic conditions and microbial C use under drought conditions. Scientific Reports, 2018, 8, 6852.	3.3	84
53	Advances in Molecular Approaches for Understanding Soil Organic Matter Composition, Origin, and Turnover: A Historical Overview. Advances in Agronomy, 2018, , 1-48.	5.2	75
54	Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of the Total Environment, 2018, 621, 148-159.	8.0	181

#	Article	IF	CITATIONS
55	Put more carbon in soils to meet Paris climate pledges. Nature, 2018, 564, 32-34.	27.8	119
56	Ley grassland under temperate climate had a legacy effect on soil organic matter quantity, biogeochemical signature and microbial activities. Soil Biology and Biochemistry, 2018, 122, 203-210.	8.8	30
57	â€~4 per 1,000' initiative will boost soil carbon for climate and food security. Nature, 2018, 553, 27-27.	27.8	43
58	Adding worms during composting of organic waste with red mud and fly ash reduces CO2 emissions and increases plant available nutrient contents. Journal of Environmental Management, 2018, 222, 207-215.	7.8	34
59	Microbial Control of Soil Carbon Turnover. , 2018, , 165-194.		7
60	Biochar alters the soil microbiome and soil function: results of nextâ€generation amplicon sequencing across Europe. GCB Bioenergy, 2017, 9, 591-612.	5.6	126
61	Molecular-level understanding of malic acid retention mechanisms in ternary kaolinite-Fe(III)-malic acid systems: The importance of Fe speciation. Chemical Geology, 2017, 464, 69-75.	3.3	17
62	Release of dissolved phosphorus from riparian wetlands: Evidence for complex interactions among hydroclimate variability, topography and soil properties. Science of the Total Environment, 2017, 598, 421-431.	8.0	73
63	Size fractionation as a tool for separating charcoal of different fuel source and recalcitrance in the wildfire ash layer. Science of the Total Environment, 2017, 595, 461-471.	8.0	20
64	Aligning agriculture and climate policy. Nature Climate Change, 2017, 7, 307-309.	18.8	213
65	Biogeochemical nature of grassland soil organic matter under plant communities with two nitrogen sources. Plant and Soil, 2017, 415, 189-201.	3.7	13
66	A multi-technique approach to assess the fate of biochar in soil and to quantify its effect on soil organic matter composition. Organic Geochemistry, 2017, 112, 177-186.	1.8	29
67	Does grassland introduction into cropping cycles affect carbon dynamics through changes of allocation of soil organic matter within aggregate fractions?. Science of the Total Environment, 2017, 576, 251-263.	8.0	40
68	Anthropogenic charcoal-rich soils of the XIX century reveal that biochar leads to enhanced fertility and fodder quality of alpine grasslands. Plant and Soil, 2017, 411, 499-516.	3.7	10
69	Characterization of Biogeochemical Processes at the Microscale. , 2017, , 193-212.		6
70	Persistence in soil of Miscanthus biochar in laboratory and field conditions. PLoS ONE, 2017, 12, e0184383.	2.5	21
71	Characterization of Biogeochemical Processes at the Microscale. , 2017, , 193-212.		0
72	Fertilizer effects on phosphorus fractions and organic matter in Andisols. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	3.4	8

#	Article	IF	CITATIONS
73	The effects of worms, clay and biochar on CO ₂ emissions during production and soil application of co-composts. Soil, 2016, 2, 673-683.	4.9	20
74	Management effects on composition and dynamics of cutin and suberin in topsoil under agricultural use. European Journal of Soil Science, 2016, 67, 360-373.	3.9	20
75	Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy. Scientific Reports, 2016, 6, 26127.	3.3	26
76	Chemical nature of residual phosphorus in Andisols. Geoderma, 2016, 271, 27-31.	5.1	39
77	Urban waste composts enhance OC and N stocks after long-term amendment but do not alter organic matter composition. Agriculture, Ecosystems and Environment, 2016, 223, 211-222.	5.3	33
78	Mixing of biochar with organic amendments reduces carbon removal after field exposure under tropical conditions. Ecological Engineering, 2016, 91, 378-380.	3.6	18
79	Co-composting solid biowastes with alkaline materials to enhance carbon stabilization and revegetation potential. Environmental Science and Pollution Research, 2016, 23, 7099-7110.	5.3	21
80	How do microbial communities in top- and subsoil respond to root litter addition under field conditions?. Soil Biology and Biochemistry, 2016, 103, 28-38.	8.8	43
81	Global change pressures on soils from land use and management. Global Change Biology, 2016, 22, 1008-1028.	9.5	605
82	Organic matter composition and the protist and nematode communities around anecic earthworm burrows. Biology and Fertility of Soils, 2016, 52, 91-100.	4.3	35
83	Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant and Soil, 2016, 403, 375-387.	3.7	22
84	Effects of grasses and a legume grown in monoculture or mixture on soil organic matter and phosphorus forms. Plant and Soil, 2016, 402, 117-128.	3.7	42
85	Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar. Chemosphere, 2016, 144, 879-887.	8.2	62
86	Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil. GCB Bioenergy, 2015, 7, 488-496.	5.6	107
87	Biochar mineralization and priming effect on <scp>SOM</scp> decomposition in two European short rotation coppices. GCB Bioenergy, 2015, 7, 1150-1160.	5.6	66
88	Role of Nanoclays in Carbon stabilization in Andisols and Cambisols. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	3.4	3
89	A call for international soil experiment networks for studying, predicting, and managing global change impacts. Soil, 2015, 1, 575-582.	4.9	12
90	The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	3.4	31

#	Article	IF	CITATIONS
91	Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil, 2015, 1, 665-685.	4.9	249
92	Nature and decomposition degree of cover crops influence pesticide sorption: Quantification and modelling. Chemosphere, 2015, 119, 1007-1014.	8.2	18
93	Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Science of the Total Environment, 2015, 514, 147-154.	8.0	252
94	Abundance and composition of free and aggregate-occluded carbohydrates and lignin in two forest soils as affected by wildfires of different severity. Geoderma, 2015, 245-246, 40-51.	5.1	41
95	Effect of biochar addition on C mineralisation and soil organic matter priming in two subsoil horizons. Journal of Soils and Sediments, 2015, 15, 825-832.	3.0	35
96	Nanoscale evidence of contrasted processes for root-derived organic matter stabilization by mineral interactions depending on soil depth. Soil Biology and Biochemistry, 2015, 85, 82-88.	8.8	73
97	Methods for Studying Soil Organic Matter. , 2015, , 383-419.		18
98	Carbon Sequestration and Fertility after Centennial Time Scale Incorporation of Charcoal into Soil. PLoS ONE, 2014, 9, e91114.	2.5	55
99	Composition changes of eroded carbon at different spatial scales in a tropical watershed suggest enrichment of degraded material during transport. Biogeosciences, 2014, 11, 3299-3305.	3.3	3
100	Use of organic substrates for increasing soil organic matter quality and carbon sequestration of tropical degraded soil: a 3-year mesocosms experiment. Carbon Management, 2014, 5, 155-168.	2.4	21
101	Enhancing carbon sequestration for mitigation and co-benefits in agriculture: actions and novel practices. Carbon Management, 2014, 5, 127-129.	2.4	2
102	Opportunities and threats of deep soil organic matter storage. Carbon Management, 2014, 5, 115-117.	2.4	14
103	Application of thermal and spectroscopic techniques to assess fire-induced changes to soil organic matter in a Mediterranean forest. Journal of Geochemical Exploration, 2014, 143, 174-182.	3.2	33
104	Soil carbon storage and stabilisation in andic soils: A review. Catena, 2014, 120, 102-110.	5.0	125
105	Effects of drought and elevated temperature on biochemical composition of forage plants and their impact on carbon storage in grassland soil. Plant and Soil, 2014, 374, 767-778.	3.7	37
106	Effects of soil mineral matrix on the analysis of plant―and soilâ€derived polysaccharides after acid hydrolysis. Rapid Communications in Mass Spectrometry, 2014, 28, 2337-2340.	1.5	0
107	Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters. Global Change Biology, 2014, 20, 2272-2285.	9.5	26
108	Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry, 2013, 114, 201-212.	3.5	83

#	Article	IF	CITATIONS
109	Adsorption and desorption behavior of selected pesticides as influenced by decomposition of maize mulch. Chemosphere, 2013, 91, 1447-1455.	8.2	35
110	Organic matter stabilization in two Andisols of contrasting age under temperate rain forest. Biology and Fertility of Soils, 2013, 49, 681-689.	4.3	15
111	Ligno-aliphatic complexes in soils revealed by an isolation procedure: implication for lignin fate. Biology and Fertility of Soils, 2013, 49, 517-526.	4.3	9
112	Fingerprinting sediment sources in the outlet reservoir of a hilly cultivated catchment in Tunisia. Journal of Soils and Sediments, 2013, 13, 801-815.	3.0	49
113	Biological and chemical reactivity and phosphorus forms of buffalo manure compost, vermicompost and their mixture with biochar. Bioresource Technology, 2013, 148, 401-407.	9.6	93
114	Can biochar and hydrochar stability be assessed with chemical methods?. Organic Geochemistry, 2013, 60, 40-44.	1.8	36
115	Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and) Tj ETQq1 1 0.7 Bioenergy, 2013, 59, 264-278.	784314 rg 5.7	BT /Overlock 192
116	Interactions between compost, vermicompost and earthworms influence plant growth and yield: A one-year greenhouse experiment. Scientia Horticulturae, 2013, 160, 148-154.	3.6	65
117	Changes in litter chemistry and soil lignin signature during decomposition and stabilisation of 13C labelled wheat roots in three subsoil horizons. Soil Biology and Biochemistry, 2013, 67, 55-61.	8.8	20
118	The role of lignin for the δ13C signature in C4 grassland and C3 forest soils. Soil Biology and Biochemistry, 2013, 57, 1-13.	8.8	26
119	Chemical modification of biomass residues during hydrothermal carbonization – What makes the difference, temperature or feedstock?. Organic Geochemistry, 2013, 54, 91-100.	1.8	160
120	Organic matter stabilization and ecosystem functions: proceedings of the fourth conference on the mechanisms of organic matter stabilization and destabilization (SOM-2010, Presqu'île de Giens,) Tj ETQq0	0 \$15 gBT /	'O ve rlock 10
121	Cutin and suberin biomarkers as tracers for the turnover of shoot and root derived organic matter along a chronosequence of Ecuadorian pasture soils. European Journal of Soil Science, 2012, 63, 808-819.	3.9	27
122	Evolution of soil organic matter after prescribed fire: A 20-year chronosequence. Geoderma, 2012, 189-190, 98-107.	5.1	43
123	Contribution of maize root derived C to soil organic carbon throughout an agricultural soil profile assessed by compound specific 13C analysis. Organic Geochemistry, 2012, 42, 1502-1511.	1.8	21
124	Preface to the Special Issue on "Challenges and limits of stable isotopes in environmental research― Organic Geochemistry, 2012, 42, 1437-1439.	1.8	1
125	Black carbon contribution in volcanic soils affected by wildfire or stubble burning. Organic Geochemistry, 2012, 47, 41-50.	1.8	16
126	Lignin signature as a function of land abandonment and erosion in dry luvisols of SE Spain. Catena, 2012, 93, 78-86.	5.0	9

#	Article	IF	CITATIONS
127	Improving bioavailability of phosphorous from cattle dung by using phosphatase immobilized on natural clay and nanoclay. Chemosphere, 2012, 89, 648-655.	8.2	30
128	Carbon distribution in top―and subsoil horizons of two contrasting Andisols under pasture or forest. European Journal of Soil Science, 2012, 63, 616-624.	3.9	14
129	Evolution of organic matter in lignite-containing sediments revealed by analytical pyrolysis (Py–GC–MS). Organic Geochemistry, 2012, 53, 119-130.	1.8	19
130	Carbon Storage and Sequestration in Subsoil Horizons: Knowledge, Gaps and Potentials. , 2012, , 445-464.		41
131	Effect of ¹³ C enrichment and sugar type on analysis of sugars by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 2012, 26, 1934-1940.	1.5	2
132	Contrasting composition of free and mineral-bound organic matter in top- and subsoil horizons of Andosols. Biology and Fertility of Soils, 2012, 48, 401-411.	4.3	48
133	The effect of earthworms on carbon storage and soil organic matter composition in tropical soil amended with compost and vermicompost. Soil Biology and Biochemistry, 2012, 50, 214-220.	8.8	51
134	Carbon allocation in grassland communities under drought stress followed by 14CÂpulse labeling. Soil Biology and Biochemistry, 2012, 55, 132-139.	8.8	116
135	How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem?. Plant and Soil, 2012, 352, 277-288.	3.7	134
136	Do Compost and Vermicompost Improve Macronutrient Retention and Plant Growth in Degraded Tropical Soils?. Compost Science and Utilization, 2011, 19, 15-24.	1.2	52
137	Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Applied Soil Ecology, 2011, 48, 38-44.	4.3	186
138	Rainfall simulation to identify the storm-scale mechanisms of gully bank retreat. Agricultural Water Management, 2011, 98, 1704-1710.	5.6	38
139	Nanoclays from an Andisol: Extraction, properties and carbon stabilization. Geoderma, 2011, 161, 159-167.	5.1	105
140	Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma, 2011, 167-168, 148-155.	5.1	115
141	Carbon mineralization and lignin content of eroded sediments from a grazed watershed of South-Africa. Geoderma, 2011, 167-168, 247-253.	5.1	17
142	How do earthworms influence organic matter quantity and quality in tropical soils?. Soil Biology and Biochemistry, 2011, 43, 223-230.	8.8	38
143	Can cutin and suberin biomarkers be used to trace shoot and root-derived organic matter? A molecular and isotopic approach. Biogeochemistry, 2011, 106, 23-38.	3.5	40
144	Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil, 2011, 338, 143-158.	3.7	1,239

#	Article	IF	CITATIONS
145	Decomposition and stabilization of root litter in top- and subsoil horizons: what is the difference?. Plant and Soil, 2011, 338, 127-141.	3.7	114
146	Transformation of buffalo manure by composting or vermicomposting to rehabilitate degraded tropical soils. Ecological Engineering, 2011, 37, 269-276.	3.6	55
147	Carbon storage and organic matter dynamics in grassland soils , 2011, , 65-72.		5
148	How does plant leaf senescence of grassland species influence decomposition kinetics and litter compounds dynamics?. Nutrient Cycling in Agroecosystems, 2010, 88, 159-171.	2.2	52
149	Response of bulk chemical composition, lignin and carbohydrate signature to grassland conversion in a ley-arable cropping system. Nutrient Cycling in Agroecosystems, 2010, 88, 173-182.	2.2	10
150	Molecular dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural abundance 13C labelling. Soil Biology and Biochemistry, 2010, 42, 169-177.	8.8	96
151	Non-cellulosic neutral sugar contribution to mineral associated organic matter in top- and subsoil horizons of two acid forest soils. Soil Biology and Biochemistry, 2010, 42, 379-382.	8.8	89
152	Fate of lignins in soils: A review. Soil Biology and Biochemistry, 2010, 42, 1200-1211.	8.8	495
153	Charcoal mineralisation potential of microbial inocula from burned and unburned forest soil with and without substrate addition. Soil Biology and Biochemistry, 2010, 42, 1472-1478.	8.8	36
154	Relative importance of sorption versus aggregation for organic matter storage in subsoil horizons of two contrasting soils. European Journal of Soil Science, 2010, 61, 958-969.	3.9	80
155	Spatial dependance of organic carbon–metal relationships. Geoderma, 2010, 158, 120-127.	5.1	28
156	Quantitative and qualitative analysis of cutin in maize and a maize-cropped soil: Comparison of CuO oxidation, transmethylation and saponification methods. Organic Geochemistry, 2010, 41, 187-191.	1.8	20
157	Thermal alteration of organic matter during a shrubland fire: A field study. Organic Geochemistry, 2010, 41, 690-697.	1.8	69
158	Nature and reactivity of charcoal produced and added to soil during wildfire are particle-size dependent. Organic Geochemistry, 2010, 41, 682-689.	1.8	108
159	The rehabilitation of tropical soils using compost and vermicompost is affected by the presence of endogeic earthworms. Applied Soil Ecology, 2010, 46, 125-133.	4.3	54
160	Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biology and Biochemistry, 2009, 41, 256-261.	8.8	215
161	Isolation of soil lignins by combination of ball-milling and cellulolysis: Evaluation of purity and isolation efficiency with pyrolysis/GC/MS. Journal of Analytical and Applied Pyrolysis, 2009, 85, 426-430.	5.5	16
162	Organic matter dynamics in agroâ€ecosystems – the knowledge gaps. European Journal of Soil Science, 2009, 60, 153-157.	3.9	31

#	Article	IF	CITATIONS
163	Depletion of soil organic carbon and nitrogen under <i>Pinus taeda </i> plantations in Southern Brazilian grasslands (<i>Campos</i>). European Journal of Soil Science, 2009, 60, 347-359.	3.9	41
164	Changes in soil organic matter composition are associated with forest encroachment into grassland with longâ€ŧerm fire history. European Journal of Soil Science, 2009, 60, 578-589.	3.9	24
165	Relevance and limitations of biogenic and physicogenic classification: a comparison of approaches for differentiating the origin of soil aggregates. European Journal of Soil Science, 2009, 60, 1117-1125.	3.9	52
166	Impact of landuse change on the molecular composition of soil organic matter. Journal of Analytical and Applied Pyrolysis, 2009, 85, 431-434.	5.5	40
167	Erosion budget and process selectivity of black carbon at meter scale. Geoderma, 2009, 154, 131-137.	5.1	77
168	Can pyrolysis-GC/MS be used to estimate the degree of thermal alteration of black carbon?. Organic Geochemistry, 2009, 40, 1179-1187.	1.8	62
169	Lignin degradation during a laboratory incubation followed by 13C isotope analysis. Soil Biology and Biochemistry, 2008, 40, 1916-1922.	8.8	91
170	Araucaria forest expansion on grassland in the southern Brazilian highlands as revealed by 14C and δ13C studies. Geoderma, 2008, 145, 143-157.	5.1	53
171	Stabilisation of HF soluble and HCl resistant organic matter in sloping tropical soils under slash and burn agriculture. Geoderma, 2008, 145, 347-354.	5.1	37
172	Origin of Nitrogen in Reforested Lignite-Rich Mine Soils Revealed by Stable Isotope Analysis. Environmental Science & Technology, 2008, 42, 2787-2792.	10.0	20
173	DOES BURNING OF HARVESTING RESIDUES INCREASE SOIL CARBON STORAGE?. Revista De La Ciencia Del Suelo Y Nutricion Vegetal, 2008, 8, .	0.4	3
174	Composition and reactivity of morphologically distinct charred materials left after slash-and-burn practices in agricultural tropical soils. Organic Geochemistry, 2007, 38, 911-920.	1.8	68
175	Stable carbon isotope signature and chemical composition of organic matter in lignite-containing mine soils and sediments are closely linked. Organic Geochemistry, 2007, 38, 835-844.	1.8	19
176	Composition and radiocarbon age of HF-resistant soil organic matter in a Podzol and a Cambisol. Organic Geochemistry, 2007, 38, 1356-1372.	1.8	68
177	Dynamics of13C-labeled mustard litter (Sinapis alba) in particle-size and aggregate fractions in an agricultural cropland with high- and low-yield areas. Journal of Plant Nutrition and Soil Science, 2007, 170, 123-133.	1.9	15
178	Elemental and Molecular Evidence of Soot- and Char-Derived Black Carbon Inputs to New York City's Atmosphere during the 20th Century. Environmental Science & Technology, 2007, 41, 82-87.	10.0	48
179	Comparison of quantification methods to measure fireâ€derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochemical Cycles, 2007, 21, .	4.9	483
180	Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 2007, 450, 277-280.	27.8	1,695

#	Article	IF	CITATIONS
181	Fire impact on C and N losses and charcoal production in a scrub oak ecosystem. Biogeochemistry, 2007, 82, 201-216.	3.5	112
182	Preferential erosion of black carbon on steep slopes with slash and burn agriculture. Catena, 2006, 65, 30-40.	5.0	170
183	Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma, 2006, 130, 35-46.	5.1	165
184	Influence of change in land use on the refractory organic macromolecular fraction of a sandy spodosol (Landes de Gascogne, France). Geoderma, 2006, 136, 136-151.	5.1	18
185	Isotopic tracers for the analysis of vegetation-derived organic matter in lignite-containing soils and sediments along a transect ranging from a forest soil to submerged lake sediment. Organic Geochemistry, 2006, 37, 740-753.	1.8	14
186	Lignite degradation and mineralization in lignite-containing mine sediment as revealed by 14C activity measurements and molecular analysis. Organic Geochemistry, 2006, 37, 957-976.	1.8	19
187	Black carbon yields and types in forest and cultivated sandy soils (Landes de Gascogne, France) as determined with different methods: Influence of change in land use. Organic Geochemistry, 2006, 37, 1185-1189.	1.8	23
188	Relative distributions of phenol dimers and hydroxy acids in a cultivated soil and above ground maize tissue. Organic Geochemistry, 2006, 37, 1634-1638.	1.8	25
189	Alteration of soil organic matter following treatment with hydrofluoric acid (HF). Organic Geochemistry, 2006, 37, 1437-1451.	1.8	139
190	Lignin turnover in an agricultural field: from plant residues to soil-protected fractions. European Journal of Soil Science, 2006, 57, 530-538.	3.9	108
191	Cas chromatographic analysis of monosaccharides in a forest soil profile: Analysis by gas chromatography after trifluoroacetic acid hydrolysis and reduction–acetylation. Soil Biology and Biochemistry, 2006, 38, 1478-1481.	8.8	92
192	Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biology and Biochemistry, 2006, 38, 1977-1988.	8.8	136
193	Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores. European Journal of Soil Science, 2005, 56, 050912034650049.	3.9	125
194	Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil, 2005, 269, 341-356.	3.7	1,385
195	Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France). Geoderma, 2005, 128, 3-17.	5.1	189
196	Effect of base hydrolysis on the chemical composition of organic matter of an acid forest soil. Organic Geochemistry, 2005, 36, 239-249.	1.8	21
197	Spectroscopic and pyrolytic features and abundance of the macromolecular refractory fraction in a sandy acid forest soil (Landes de Gascogne, France). Organic Geochemistry, 2005, 36, 349-362.	1.8	37
198	Stabilization of soil organic matter isolated via oxidative degradation. Organic Geochemistry, 2005, 36, 1567-1575.	1.8	162

#	Article	IF	CITATIONS
199	Water erosion impact on soil and carbon redistributions within uplands of Mekong River. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	81
200	Chemical Composition of Organic Matter in Extremely Acid, Ligniteâ€Containing Lake Sediments Impacted by Fly Ash Contamination. Journal of Environmental Quality, 2004, 33, 628-636.	2.0	5
201	Microbial use of lignite compared to recent plant litter as substrates in reclaimed coal mine soils. Soil Biology and Biochemistry, 2004, 36, 67-75.	8.8	35
202	Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biology and Biochemistry, 2004, 36, 177-190.	8.8	171
203	Decomposition of plant tissue submerged in an extremely acidic mining lake sediment: phenolic CuO-oxidation products and solid-state 13C NMR spectroscopy. Soil Biology and Biochemistry, 2004, 36, 1161-1169.	8.8	26
204	Variation in lipid relative abundance and composition among different particle size fractions of a forest soil. Organic Geochemistry, 2004, 35, 1355-1370.	1.8	78
205	Alkyl C and hydrophobicity in B and C horizons of an acid forest soil. Journal of Plant Nutrition and Soil Science, 2004, 167, 685-692.	1.9	25
206	Variation in lipid relative abundance and composition among different particle size fractions of a forest soil. Organic Geochemistry, 2004, 35, 1355-1370.	1.8	43
207	Chemical Composition of Organic Matter in Extremely Acid, Lignite-Containing Lake Sediments Impacted by Fly Ash Contamination. Journal of Environmental Quality, 2004, 33, 628.	2.0	4
208	Characterisation of Organic Matter and Carbon Cycling in Rehabilitated Lignite-rich Mine Soils. Water, Air and Soil Pollution, 2003, 3, 153-166.	0.8	11
209	Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Organic Geochemistry, 2003, 34, 1591-1600.	1.8	362
210	Quantification of lignite- and vegetation-derived soil carbon using 14C activity measurements in a forested chronosequence. Geoderma, 2003, 112, 155-166.	5.1	48
211	Stabilization of organic matter by soil minerals — investigations of density and particle-size fractions from two acid forest soils. Journal of Plant Nutrition and Soil Science, 2002, 165, 451.	1.9	220
212	The role of lignite in the carbon cycle of lignite-containing mine soils: evidence from carbon mineralisation and humic acid extractions. Organic Geochemistry, 2002, 33, 393-399.	1.8	41
213	Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Organic Geochemistry, 2002, 33, 1131-1142.	1.8	316
214	Quantification of carbon derived from lignite in soils using mid-infrared spectroscopy and partial least squares. Organic Geochemistry, 2001, 32, 831-839.	1.8	59
215	Characterisation of the microbial biomass in lignite-containing mine soils by radiocarbon measurements. Soil Biology and Biochemistry, 2001, 33, 2019-2021.	8.8	13
216	The role of organic carbon excretion by bulbous rush roots and its turnover and utilization by bacteria under iron plaques in extremely acid sediments. Environmental and Experimental Botany, 2001, 46, 237-245.	4.2	25

#	Article	IF	CITATIONS
217	Techniques for the differentiation of carbon types present in lignite-rich mine soils. Organic Geochemistry, 2000, 31, 543-551.	1.8	34
218	Composition and distribution of organic matter in physical fractions of a rehabilitated mine soil rich in lignite-derived carbon. Geoderma, 2000, 98, 177-192.	5.1	22
219	Mikrobielle Abbaubarkeit von geogenem Kohlenstoff in braunkohlehaltigen Kippböden (Teilprojekt 2.2). , 2000, , 19-37.		0
220	Bestimmung und Charakterisierung der organischen Substanz in braunkohlehaltigen aschemeliorierten KippenbĶden unter Wald. , 2000, , 261-284.		5
221	Evaluation of an ultrasonic dispersion procedure to isolate primary organomineral complexes from soils. European Journal of Soil Science, 1999, 50, 87-94.	3.9	199
222	Particle size fractionation of soil containing coal and combusted particles. European Journal of Soil Science, 1999, 50, 515-522.	3.9	43
223	Title is missing!. Plant and Soil, 1999, 213, 161-168.	3.7	58
224	Title is missing!. Water, Air, and Soil Pollution, 1998, 105, 481-492.	2.4	28
225	Types and chemical composition of organic matter in reforested lignite-rich mine soils. Geoderma, 1998, 86, 123-142.	5.1	95