
R Paul Jarvis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8199483/publications.pdf Version: 2024-02-01

P DALLI LADVIC

#	Article	IF	CITATIONS
1	Biogenesis and homeostasis of chloroplasts and other plastids. Nature Reviews Molecular Cell Biology, 2013, 14, 787-802.	37.0	581
2	Targeting of nucleusâ€encoded proteins to chloroplasts in plants. New Phytologist, 2008, 179, 257-285.	7.3	332
3	Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynthesis Research, 2011, 107, 209-214.	2.9	308
4	Chloroplast Biogenesis Is Regulated by Direct Action of the Ubiquitin-Proteasome System. Science, 2012, 338, 655-659.	12.6	221
5	<i>In vivo</i> studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import. Plant Journal, 2005, 41, 412-428.	5.7	189
6	Functional Specialization amongst the Arabidopsis Toc159 Family of Chloroplast Protein Import Receptors[W]. Plant Cell, 2004, 16, 2059-2077.	6.6	184
7	A simple method for isolating import-competentArabidopsischloroplasts. FEBS Letters, 2002, 529, 215-220.	2.8	177
8	A Mutant Impaired in the Production of Plastome-Encoded Proteins Uncovers a Mechanism for the Homeostasis of Isoprenoid Biosynthetic Enzymes in <i>Arabidopsis</i> Plastids. Plant Cell, 2008, 20, 1303-1315.	6.6	159
9	The Arabidopsis ppi1 Mutant Is Specifically Defective in the Expression, Chloroplast Import, and Accumulation of Photosynthetic Proteins[W]. Plant Cell, 2003, 15, 1859-1871.	6.6	153
10	Mechanisms of Protein Import and Routing in Chloroplasts. Current Biology, 2004, 14, R1064-R1077.	3.9	142
11	Chloroplast Biogenesis: Control of Plastid Development, Protein Import, Division and Inheritance. The Arabidopsis Book, 2008, 6, e0110.	0.5	129
12	Monogalactosyldiacylglycerol Deficiency in Arabidopsis Affects Pigment Composition in the Prolamellar Body and Impairs Thylakoid Membrane Energization and Photoprotection in Leaves Â. Plant Physiology, 2008, 148, 580-592.	4.8	118
13	A Molecular-Genetic Study of the Arabidopsis Toc75 Gene Family. Plant Physiology, 2005, 138, 715-733.	4.8	117
14	Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import. Plant Journal, 2007, 50, 364-379.	5.7	114
15	Regulation of Chloroplast Protein Import by the Ubiquitin E3 Ligase SP1 Is Important for Stress Tolerance in Plants. Current Biology, 2015, 25, 2527-2534.	3.9	113
16	Molecular chaperone involvement in chloroplast protein import. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 332-340.	4.1	111
17	Ubiquitin-dependent chloroplast-associated protein degradation in plants. Science, 2019, 363, .	12.6	110
18	New Arabidopsis cue Mutants Suggest a Close Connection between Plastid- and Phytochrome Regulation of Nuclear Gene Expression. Plant Physiology, 1998, 118, 803-815.	4.8	109

R PAUL JARVIS

#	Article	IF	CITATIONS
19	Control of retrograde signalling by protein import and cytosolic folding stress. Nature Plants, 2019, 5, 525-538.	9.3	109
20	An outer envelope membrane component of the plastid protein import apparatus plays an essential role inArabidopsis. Plant Journal, 2004, 38, 93-106.	5.7	101
21	Recognition and envelope translocation of chloroplast preproteins. Journal of Experimental Botany, 2005, 56, 2287-2320.	4.8	96
22	Differentiation of chromoplasts and other plastids in plants. Plant Cell Reports, 2019, 38, 803-818.	5.6	87
23	A role for <i>SENSITIVE TO FREEZING2</i> in protecting chloroplasts against freezeâ€induced damage in Arabidopsis. Plant Journal, 2008, 55, 734-745.	5.7	79
24	The Omp85-Related Chloroplast Outer Envelope Protein OEP80 Is Essential for Viability in Arabidopsis Â. Plant Physiology, 2008, 148, 235-245.	4.8	77
25	Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts in <i>Arabidopsis thaliana</i> . Plant Journal, 2007, 52, 53-68.	5.7	75
26	Nucleotide sequence and temporal regulation of a seed-specificBrassica napus cDNA encoding a stearoyl-acyl carrier protein (ACP) desaturase. Plant Molecular Biology, 1992, 20, 151-155.	3.9	62
27	Functional Similarity between the Chloroplast Translocon Component, Tic40, and the Human Co-chaperone, Hsp70-interacting Protein (Hip). Journal of Biological Chemistry, 2007, 282, 21404-21414.	3.4	60
28	Integration of CAPS markers into the RFLP map generated using recombinant inbred lines of Arabidopsis thaliana. Plant Molecular Biology, 1994, 24, 685-687.	3.9	57
29	Molecular and genetic analyses of Tic20 homologues in <i>Arabidopsis thaliana</i> chloroplasts. Plant Journal, 2011, 66, 877-889.	5.7	57
30	Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope. Plant Physiology, 2016, 170, 147-162.	4.8	54
31	The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato. Nature Plants, 2021, 7, 655-666.	9.3	51
32	In Vivo Analyses of the Roles of Essential Omp85-Related Proteins in the Chloroplast Outer Envelope Membrane Â. Plant Physiology, 2011, 157, 147-159.	4.8	49
33	Organellar Proteomics: Chloroplasts in the Spotlight. Current Biology, 2004, 14, R317-R319.	3.9	47
34	Cloning and characterisation of an oleosin gene from Brassica napus. Plant Molecular Biology, 1992, 19, 443-453.	3.9	46
35	Abiotic stress-induced chloroplast proteome remodelling: a mechanistic overview. Journal of Experimental Botany, 2018, 69, 2773-2781.	4.8	44
36	The role of chloroplasts in plant pathology. Essays in Biochemistry, 2018, 62, 21-39.	4.7	43

R PAUL JARVIS

#	Article	IF	CITATIONS
37	Isolation and Preparation of Chloroplasts from Arabidopsis thaliana Plants. Methods in Molecular Biology, 2008, 425, 171-186.	0.9	40
38	Chloroplast Autophagy and Ubiquitination Combine to Manage Oxidative Damage and Starvation Responses. Plant Physiology, 2020, 183, 1531-1544.	4.8	38
39	The Stromal Processing Peptidase of Chloroplasts is Essential in Arabidopsis, with Knockout Mutations Causing Embryo Arrest after the 16-Cell Stage. PLoS ONE, 2011, 6, e23039.	2.5	37
40	Protein import into chloroplasts and its regulation by the ubiquitin-proteasome system. Biochemical Society Transactions, 2020, 48, 71-82.	3.4	35
41	In vivo assessment of the significance of phosphorylation of theArabidopsischloroplast protein import receptor, atToc33. FEBS Letters, 2006, 580, 649-655.	2.8	34
42	Nucleotide binding and dimerization at the chloroplast preâ€protein import receptor, atToc33, are not essential <i>inâ€fvivo</i> but do increase import efficiency. Plant Journal, 2010, 63, 297-311.	5.7	34
43	Functions of plastid protein import and the ubiquitin–proteasome system in plastid development. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 939-948.	1.0	33
44	Intracellular Signalling: The Language of the Chloroplast. Current Biology, 2003, 13, R314-R316.	3.9	28
45	In vivo Studies on the Roles of Tic55-Related Proteins in Chloroplast Protein Import in Arabidopsis thaliana. Molecular Plant, 2009, 2, 1397-1409.	8.3	28
46	Dynamic regulation of endosymbiotic organelles by ubiquitination. Trends in Cell Biology, 2013, 23, 399-408.	7.9	28
47	Unusual nucleotide-binding properties of the chloroplast protein import receptor, atToc33. FEBS Letters, 2003, 544, 79-85.	2.8	25
48	Rapid Isolation of Arabidopsis Chloroplasts and Their Use for In Vitro Protein Import Assays. Methods in Molecular Biology, 2011, 774, 281-305.	0.9	24
49	Suppressors of the Chloroplast Protein Import Mutant <i>tic40</i> Reveal a Genetic Link between Protein Import and Thylakoid Biogenesis. Plant Cell, 2017, 29, 1726-1747.	6.6	24
50	Isolation and Suborganellar Fractionation of Arabidopsis Chloroplasts. Methods in Molecular Biology, 2017, 1511, 45-60.	0.9	22
51	Neofunctionalization within the Omp85 protein superfamily during chloroplast evolution. Plant Signaling and Behavior, 2012, 7, 161-164.	2.4	20
52	Plant Signaling: Ubiquitin Pulls the Trigger on Chloroplast Degradation. Current Biology, 2016, 26, R38-R40.	3.9	20
53	Chloroplast Ubiquitin E3 Ligase SP1: Does It Really Function in Peroxisomes?. Plant Physiology, 2017, 175, 586-588.	4.8	20
54	Retrograde signalling in a virescent mutant triggers an anterograde delay of chloroplast biogenesis that requires GUN1 and is essential for survival. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190400.	4.0	19

R PAUL JARVIS

#	Article	IF	CITATIONS
55	Evolutionary, Molecular and Genetic Analyses of Tic22 Homologues in Arabidopsis thaliana Chloroplasts. PLoS ONE, 2013, 8, e63863.	2.5	18
56	Genetic and Physical Interaction Studies Reveal Functional Similarities between ALBINO3 and ALBINO4 in Arabidopsis A. Plant Physiology, 2015, 169, 1292-1306.	4.8	17
57	Two distinct Omp85 paralogs in the chloroplast outer envelope membrane are essential for embryogenesis in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2008, 3, 1134-1135.	2.4	14
58	Studying Arabidopsis Chloroplast Structural Organisation Using Transmission Electron Microscopy. Methods in Molecular Biology, 2011, 774, 113-132.	0.9	14
59	Dimerization of TOC receptor GTPases and its implementation for the control of protein import into chloroplasts. Biochemical Journal, 2011, 436, e1-e2.	3.7	11
60	Mutations in the chloroplast inner envelope protein TIC100 impair and repair chloroplast protein import and impact retrograde signaling. Plant Cell, 2022, 34, 3028-3046.	6.6	11
61	Intracellular Signalling: Chloroplast Backchat. Current Biology, 2007, 17, R552-R555.	3.9	9
62	The Tic20 gene family. Plant Signaling and Behavior, 2011, 6, 1046-1048.	2.4	9
63	Analysis of Protein Import into Chloroplasts Isolated from Stressed Plants. Journal of Visualized Experiments, 2016, , .	0.3	9
64	Crosstalk between the chloroplast protein import and SUMO systems revealed through genetic and molecular investigation in Arabidopsis. ELife, 2021, 10, .	6.0	9
65	The ubiquitin-proteasome system regulates chloroplast biogenesis. Communicative and Integrative Biology, 2013, 6, e23001.	1.4	7
66	New Insights Into Roles of Ubiquitin Modification in Regulating Plastids and Other Endosymbiotic Organelles. International Review of Cell and Molecular Biology, 2016, 325, 1-33.	3.2	7
67	Mechanisms of Chloroplast Protein Import in Plants. , 2014, , 241-270.		4
68	Chloroplast Research Methods: Probing The Targeting, Localization And Interactions Of Chloroplast Proteins. Journal of Visualized Experiments, 2019, , .	0.3	2
69	The Ins and Outs of Chloroplast Protein Transport. Advances in Photosynthesis and Respiration, 2013, , 239-280.	1.0	Ο