Lynn S Adler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8198521/publications.pdf

Version: 2024-02-01

85	4,820	34	66
papers	citations	h-index	g-index
87 all docs	87 does citations	87 times ranked	3985 citing authors

#	Article	IF	CITATIONS
1	Sunflower pollen induces rapid excretion in bumble bees: Implications for host-pathogen interactions. Journal of Insect Physiology, 2022, 137, 104356.	2.0	8
2	Sunflower pollen reduces a gut pathogen in the model bee species, <i>Bombus impatiens</i> , but has weaker effects in three wild congeners. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211909.	2.6	6
3	Interacting Antagonisms: Parasite Infection Alters <i>Bombus impatiens</i> (Hymenoptera: Apidae) Responses to Herbivory on Tomato Plants. Journal of Economic Entomology, 2022, 115, 688-692.	1.8	1
4	Understanding effects of floral products on bee parasites: Mechanisms, synergism, and ecological complexity. International Journal for Parasitology: Parasites and Wildlife, 2022, 17, 244-256.	1.5	7
5	Consuming sunflower pollen reduced pathogen infection but did not alter measures of immunity in bumblebees. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210160.	4.0	8
6	Floral traits affecting the transmission of beneficial and pathogenic pollinator-associated microbes. Current Opinion in Insect Science, 2021, 44, 1-7.	4.4	29
7	Facilitative pollinator sharing decreases with floral similarity in multiple systems. Oecologia, 2021, 195, 273-286.	2.0	5
8	The costs and benefits of sunflower pollen diet on bumble bee colony disease and health. Ecosphere, 2021, 12, e03663.	2.2	12
9	Big bees spread disease: body size mediates transmission of a bumble bee pathogen. Ecology, 2021, 102, e03429.	3.2	6
10	Sunflower pollen reduces a gut pathogen in worker and queen but not male bumble bees. Ecological Entomology, 2020, 45, 1318-1326.	2.2	18
11	Colony-Level Effects of Amygdalin on Honeybees and Their Microbes. Insects, 2020, 11, 783.	2.2	6
12	Herbivory and Time Since Flowering Shape Floral Rewards and Pollinator-Pathogen Interactions. Journal of Chemical Ecology, 2020, 46, 978-986.	1.8	7
13	Flowering plant composition shapes pathogen infection intensity and reproduction in bumble bee colonies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11559-11565.	7.1	37
14	Assessing Chemical Mechanisms Underlying the Effects of Sunflower Pollen on a Gut Pathogen in Bumble Bees. Journal of Chemical Ecology, 2020, 46, 649-658.	1.8	23
15	Parasite defense mechanisms in bees: behavior, immunity, antimicrobials, and symbionts. Emerging Topics in Life Sciences, 2020, 4, 59-76.	2.6	9
16	<i>Colletotrichum</i> Species Isolated from Massachusetts Cranberries Differ in Response to the Fungicide Azoxystrobin. Plant Health Progress, 2020, 21, 103-104.	1.4	0
17	Secondary metabolites from nectar and pollen: a resource for ecological and evolutionary studies. Ecology, 2019, 100, e02621.	3.2	40
18	From plant fungi to bee parasites: mycorrhizae and soil nutrients shape floral chemistry and bee pathogens. Ecology, 2019, 100, e02801.	3.2	20

#	Article	IF	Citations
19	Bee pathogen transmission dynamics: deposition, persistence and acquisition on flowers. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190603.	2.6	84
20	Effect of timing and exposure of sunflower pollen on a common gut pathogen of bumble bees. Ecological Entomology, 2019, 44, 702-710.	2.2	9
21	Preinfection Effects of Nectar Secondary Compounds on a Bumble Bee Gut Pathogen. Environmental Entomology, 2019, 48, 685-690.	1.4	10
22	Pollen from multiple sunflower cultivars and species reduces a common bumblebee gut pathogen. Royal Society Open Science, 2019, 6, 190279.	2.4	42
23	Chemistry of floral rewards: intra―and interspecific variability of nectar and pollen secondary metabolites across taxa. Ecological Monographs, 2019, 89, e01335.	5.4	137
24	Crop Domestication Alters Floral Reward Chemistry With Potential Consequences for Pollinator Health. Frontiers in Plant Science, 2018, 9, 1357.	3.6	40
25	Medicinal value of sunflower pollen against bee pathogens. Scientific Reports, 2018, 8, 14394.	3.3	86
26	Consequences of multiple flower–insect interactions for subsequent plant–insect interactions and plant reproduction. American Journal of Botany, 2018, 105, 1835-1846.	1.7	4
27	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
28	Effects of shortâ€ŧerm exposure to naturally occurring thymol concentrations on transmission of a bumble bee parasite. Ecological Entomology, 2018, 43, 567-577.	2.2	8
29	Disease where you dine: plant species and floral traits associated with pathogen transmission in bumble bees. Ecology, 2018, 99, 2535-2545.	3.2	68
30	Phenotypic selection on floral traits in an urban landscape. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181239.	2.6	25
31	Nectar and Pollen Phytochemicals Stimulate Honey Bee (Hymenoptera: Apidae) Immunity to Viral Infection. Journal of Economic Entomology, 2017, 110, 1959-1972.	1.8	69
32	Gypsy moth herbivory induced volatiles and reduced parasite attachment to cranberry hosts. Oecologia, 2017, 185, 133-145.	2.0	6
33	Landscape predictors of pathogen prevalence and range contractions in US bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20172181.	2.6	70
34	Context-dependent medicinal effects of anabasine and infection-dependent toxicity in bumble bees. PLoS ONE, 2017, 12, e0183729.	2.5	11
35	Bumble bee parasite strains vary in resistance to phytochemicals. Scientific Reports, 2016, 6, 37087.	3.3	56
36	Florivory shapes both leaf and floral interactions. Ecosphere, 2016, 7, e01326.	2.2	17

#	Article	IF	Citations
37	Geographic variation in resistance to nectar robbing and consequences for pollination. American Journal of Botany, 2016, 103, 1819-1828.	1.7	4
38	Messages from the Other Side: Parasites Receive Damage Cues from their Host Plants. Journal of Chemical Ecology, 2016, 42, 821-828.	1.8	1
39	Food Limitation Affects Parasite Load and Survival of <i>Bombus impatiens </i> (Hymenoptera: Apidae) Infected With <i>Crithidia </i> (Trypanosomatida: Trypanosomatidae). Environmental Entomology, 2016, 45, 1212-1219.	1.4	37
40	Effects of florivory on plantâ€pollinator interactions: Implications for male and female components of plant reproduction. American Journal of Botany, 2016, 103, 1061-1070.	1.7	23
41	Floral damage induces resistance to florivory in Impatiens capensis. Arthropod-Plant Interactions, 2016, 10, 121-131.	1.1	7
42	Floral Scent Mimicry and Vector-Pathogen Associations in a Pseudoflower-Inducing Plant Pathogen System. PLoS ONE, 2016, 11, e0165761.	2.5	22
43	Parasite Removal, but Not Herbivory, Deters Future Parasite Attachment on Tomato. PLoS ONE, 2016, 11, e0161076.	2.5	1
44	Root herbivory indirectly affects above―and belowâ€ground community members and directly reduces plant performance. Journal of Ecology, 2015, 103, 1509-1518.	4.0	34
45	Relationships between parasitism, bumblebee foraging behaviour, and pollination service to <i><scp>T</scp>rifolium pratense</i> flowers. Ecological Entomology, 2015, 40, 650-653.	2.2	7
46	Testing Dose-Dependent Effects of the Nectar Alkaloid Anabasine on Trypanosome Parasite Loads in Adult Bumble Bees. PLoS ONE, 2015, 10, e0142496.	2.5	24
47	Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142471.	2.6	189
48	Nectar Attracts Foraging Honey Bees with Components of Their Queen Pheromones. Journal of Chemical Ecology, 2015, 41, 1028-1036.	1.8	8
49	Variable effects of nicotine and anabasine on parasitized bumble bees. F1000Research, 2015, 4, 880.	1.6	21
50	Variable effects of nicotine, anabasine, and their interactions on parasitized bumble bees. F1000Research, 2015, 4, 880.	1.6	26
51	Possible Synergistic Effects of Thymol and Nicotine against Crithidia bombi Parasitism in Bumble Bees. PLoS ONE, 2015, 10, e0144668.	2.5	42
52	Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens. Ecology Letters, 2014, 17, 624-636.	6.4	159
53	Effects of Suburbanization on Forest Bee Communities. Environmental Entomology, 2014, 43, 253-262.	1.4	38
54	Plant–animal interactions in suburban environments: implications for floral evolution. Oecologia, 2014, 174, 803-815.	2.0	22

#	Article	IF	CITATIONS
55	Attracting mutualists and antagonists: Plant trait variation explains the distribution of specialist floral herbivores and pollinators on crops and wild gourds. American Journal of Botany, 2014, 101, 1314-1322.	1.7	33
56	Abiotic conditions affect floral antagonists and mutualists of <i>Impatiens capensis</i> (Balsaminaceae). American Journal of Botany, 2013, 100, 679-689.	1.7	19
57	Reliance on pollinators predicts defensive chemistry across tobacco species. Ecology Letters, 2012, 15, 1140-1148.	6.4	110
58	Herbivory reduces plant interactions with above―and belowground antagonists and mutualists. Ecology, 2012, 93, 1560-1570.	3.2	68
59	What you smell is more important than what you see? Natural selection on floral scent. New Phytologist, 2012, 195, 510-511.	7.3	13
60	Nectar alkaloids decrease pollination and female reproduction in a native plant. Oecologia, 2012, 168, 1033-1041.	2.0	43
61	Effects of above- and belowground herbivory on growth, pollination, and reproduction in cucumber. Oecologia, 2011, 165, 377-386.	2.0	50
62	Leaf herbivory and drought stress affect floral attractive and defensive traits in Nicotiana quadrivalvis. Oecologia, 2010, 163, 961-971.	2.0	69
63	Manipulating the jasmonate response: How do methyl jasmonate additions mediate characteristics of aboveground and belowground mutualisms?. Functional Ecology, 2010, 24, 434-443.	3.6	37
64	Buttercup Squash Provides a Marketable Alternative to Blue Hubbard as a Trap Crop for Control of Striped Cucumber Beetles (Coleoptera: Chrysomelidae). Environmental Entomology, 2010, 39, 1953-1960.	1.4	11
65	Influence of leaf herbivory, root herbivory, and pollination on plant performance in <i>Cucurbita moschata</i> . Ecological Entomology, 2009, 34, 144-152.	2.2	37
66	The Effect of Larval Diet and Sex on Nectar Nicotine Feeding Preferences in Manduca Sexta (Lepidoptera: Sphingidae). Florida Entomologist, 2009, 92, 374-376.	0.5	8
67	Leaf herbivory increases floral fragrance in male but not femaleCucurbita peposubsp.texana(Cucurbitaceae) flowers. American Journal of Botany, 2009, 96, 897-903.	1.7	43
68	NECTAR SECONDARY COMPOUNDS AFFECT SELF-POLLEN TRANSFER: IMPLICATIONS FOR FEMALE AND MALE REPRODUCTION. Ecology, 2008, 89, 2207-2217.	3.2	39
69	The nectar alkaloid, gelsemine, does not affect offspring performance of a native solitary bee, <i>Osmia lignaria < /i> (Megachilidae). Ecological Entomology, 2008, 33, 298-304.</i>	2.2	29
70	Selection by Pollinators and Herbivores on Attraction and Defense., 2008,, 162-173.		2
71	A reply to Baldwin: critique does not weaken major conclusions. Ecology Letters, 2007, 10, E2-E3.	6.4	0
72	Pollinator and Herbivore Attraction to Cucurbita Floral Volatiles. Journal of Chemical Ecology, 2007, 33, 1682-1691.	1.8	90

#	Article	IF	CITATIONS
73	Comparison of Pollen Transfer Dynamics by Multiple Floral Visitors: Experiments with Pollen and Fluorescent Dye. Annals of Botany, 2006, 97, 141-150.	2.9	123
74	Leaf herbivory and nutrients increase nectar alkaloids. Ecology Letters, 2006, 9, 960-967.	6.4	164
75	Correlations among traits associated with herbivore resistance and pollination: implications for pollination and nectar robbing in a distylous plant. American Journal of Botany, 2006, 93, 64-72.	1.7	345
76	ECOLOGICAL COSTS AND BENEFITS OF DEFENSES IN NECTAR. Ecology, 2005, 86, 2968-2978.	3.2	151
77	THE DUAL ROLE OF FLORAL TRAITS: POLLINATOR ATTRACTION AND PLANT DEFENSE. Ecology, 2004, 85, 1503-1511.	3.2	176
78	ATTRACTING ANTAGONISTS: DOES FLORAL NECTAR INCREASE LEAF HERBIVORY?. Ecology, 2004, 85, 1519-1526.	3.2	120
79	HOST SPECIES AFFECTS HERBIVORY, POLLINATION, AND REPRODUCTION IN EXPERIMENTS WITH PARASITIC CASTILLEJA. Ecology, 2003, 84, 2083-2091.	3.2	36
80	HOST EFFECTS ON HERBIVORY AND POLLINATION IN A HEMIPARASITIC PLANT. Ecology, 2002, 83, 2700-2710.	3.2	31
81	DIRECT AND INDIRECT EFFECTS OF ALKALOIDS ON PLANT FITNESS VIA HERBIVORY AND POLLINATION. Ecology, 2001, 82, 2032-2044.	3.2	119
82	Direct and Indirect Effects of Alkaloids on Plant Fitness via Herbivory and Pollination. Ecology, 2001, 82, 2032.	3.2	12
83	The ecological significance of toxic nectar. Oikos, 2000, 91, 409-420.	2.7	488
84	Alkaloid Uptake Increases Fitness in a Hemiparasitic Plant via Reduced Herbivory and Increased Pollination. American Naturalist, 2000, 156, 92-99.	2.1	77
85	Induced plant responses and information content about risk of herbivory. Trends in Ecology and Evolution, 1999, 14, 443-447.	8.7	226