Petr HlinÄ $\wedge \mathrm{n}^{1} 1 / 2$

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/8198329/publications.pdf
Version: 2024-02-01

1 Width Parameters Beyond Tree-width and their Applications. Computer Journal, 2007, 51, 326-362. 111

Finding Branch-Decompositions and Rank-Decompositions. SIAM Journal on Computing, 2008, 38,
1.0

93
1012-1032.

Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete
Mathematics, 2001, 229, 101-124.
0.7

Kernelization using structural parameters on sparse graph classes. Journal of Computer and System
1.2

Sciences, 2017, 84, 219-242.

5 Crossing number is hard for cubic graphs. Journal of Combinatorial Theory Series B, 2006, 96, 455-471.
1.0

Branch-width, parse trees, and monadic second-order logic for matroids. Journal of Combinatorial
Theory Series B, 2006, 96, 325-351.
1.0

On parse trees and Myhillâ€"Nerode-type tools for handling graphs of bounded rank-width. Discrete
Applied Mathematics, 2010, 158, 851-867.
0.9

45

8 A Parametrized Algorithm for Matroid Branch-Width. SIAM Journal on Computing, 2005, 35, 259-277.
1.0

32

9 Digraph width measures in parameterized algorithmics. Discrete Applied Mathematics, 2014, 168, 88-107.
0.9

32

10 Crossing-number critical graphs have bounded path-width. Journal of Combinatorial Theory Series B, 2003, 88, 347-367.

11 Matroid tree-width. European Journal of Combinatorics, 2006, 27, 1117-1128.
0.8

26

12 Classes and Recognition of Curve Contact Graphs. Journal of Combinatorial Theory Series B, 1998, 74, 87-103.
1.0

23

Computing the Tutte Polynomial on Graphs of Bounded Cliqueâ€Width. SIAM Journal on Discrete
0.8

22
Mathematics, 2006, 20, 932-946.

Are there any good digraph width measures?. Journal of Combinatorial Theory Series B, 2016, 116,
250-286.
1.0

22

15 When Trees Grow Low: Shrubs and Fast MSO1. Lecture Notes in Computer Science, 2012, , 419-430.
1.3

21

On Digraph Width Measures in Parameterized Algorithmics. Lecture Notes in Computer Science, 2009, ,
19 On the Crossing Number of Almost Planar Graphs. , 2006, , 162-173. 17Vertex insertion approximates the crossing number of apex graphs. European Journal ofCombinatorics, 2012, 33, 326-335.
21 On Matroid Properties Definable in the MSO Logic. Lecture Notes in Computer Science, 2003, , 470-479. 1.3 16
22 Contact graphs of line segments are NP-complete. Discrete Mathematics, 2001, 235, 95-106. 0.7 14
23 Better Algorithms for Satisfiability Problems for Formulas of Bounded Rank-width. Fundamenta 0.4 14
Informaticae, 2013, 123, 59-76.
Kernelization Using Structural Parameters on Sparse Graph Classes. Lecture Notes in Computer
Science, 2013, , 529-540. 1.3 14
25 A Tighter Insertion-Based Approximation of the Crossing Number. Lecture Notes in Computer Science, 2011, , 122-134.Trees, grids, and MSO decidability: From graphs to matroids. Theoretical Computer Science, 2006, 351,
27 A unified approach to polynomial algorithms on graphs of bounded (bi-)rank-width. European Journalof Combinatorics, 2013, 34, 680-701.1.311
Crossing-Critical Graphs and Path-Width. Lecture Notes in Computer Science, 2002, , 102-114. 28
0.9 10
$29 \quad$ On possib0.410
The crossing number of a projective graph is quadratic in the faceâe"width. Electronic Notes inDiscrete Mathematics, 2007, 29, 219-223.
10
31 Addendum to matroid tree-width. European Journal of Combinatorics, 2009, 30, 1036-1044. 0.8
A tighter insertion-based approximation of the crossing number. Journal of CombinatorialOptimization, 2017, 33, 1183-1225.1.310
Branch-Width, Parse Trees, and Monadic Second-Order Logic for Matroids. Lecture Notes in Computer 1.3 10
33 Science, 2003, , 319-330.

```
Lower bounds on the complexity ofMSO1model-checking. Journal of Computer and System Sciences,
2014, 80, 180-194.
42 The maximal clique and colourability of curve contact graphs. Discrete Applied Mathematics, 1998, 81,
\begin{tabular}{|c|c|c|c|}
\hline 45 & On the Excluded Minors for Matroids of Branch-Width Three. Electronic Journal of Combinatorics, 2002, 9 , & 0.4 & 7 \\
\hline 46 & Computing the Tutte Polynomial on Graphs of Bounded Clique-Width. Lecture Notes in Computer Science, 2005, , 59-68. & 1.3 & 7 \\
\hline 47 & Another two graphs with no planar covers. Journal of Graph Theory, 2001, 37, 227-242. & 0.9 & 6 \\
\hline 48 & Touching graphs of unit balls. Lecture Notes in Computer Science, 1997, , 350-358. & 1.3 & 6 \\
\hline 49 & On Conflict-Free Chromatic Guarding ofÂSimple Polygons. Lecture Notes in Computer Science, 2019, , 601-612. & 1.3 & 6 \\
\hline
\end{tabular}

50 FO Model Checking of Interval Graphs. Lecture Notes in Computer Science, 2013, , 250-262.
```

 A New Perspective on FO Model Checking of Dense Graph Classes. ACM Transactions on Computational
 Logic, 2020, 21, 1-23.
    ```
\[
\begin{aligned}
& 55 \text { FO model checking on geometric graphs. Computational Geometry: Theory and Applications, 2019, 78, } \\
& 1-19 .
\end{aligned}
\]

New Results on the Complexity of Oriented Colouring on Restricted Digraph Classes. Lecture Notes in Computer Science, 2010, , 428-439.

Kernelizing MSO Properties of Trees of Fixed Height, and Some Consequences. Logical Methods in
Computer Science, 0, Volume 11, Issue 1, .

58 FO Model Checking of Interval Graphs. Logical Methods in Computer Science, 2015, 11, .
\(0.4 \quad 5\)

Exact Crossing Number Parameterized by Vertex Cover. Lecture Notes in Computer Science, 2019, ,
307-319.

60 Balanced Signings and the Chromatic Number of Oriented Matroids. Combinatorics Probability and
Computing, 2006, 15, 523.
1.3
. 35

61 Stars and bonds in crossingâ€critical graphs. Journal of Graph Theory, 2010, 65, 198-215.
0.9

A deterministic approach for rapid identification of the critical links in networks. PLoS ONE, 2019, 14, e0219658.

How not to characterize planar-emulable graphs. Advances in Applied Mathematics, 2013, 50, 46-68.
0.7

First order limits of sparse graphs: Plane trees and path-width. Random Structures and Algorithms, 2017, 50, 612-635.

Parameterized extension complexity of independent set and related problems. Discrete Applied

66 Faster Existential FO Model Checking on Posets. Logical Methods in Computer Science, 2015, 11, .
0.4
1.1

3

Equivalence-free exhaustive generation of matroid representations. Discrete Applied Mathematics, 2006, 154, 1210-1222.

Parameterized shifted combinatorial optimization. Journal of Computer and System Sciences, 2019, 99, 53-71.

Toroidal grid minors and stretch in embedded graphs. Journal of Combinatorial Theory Series B, 2020, 140, 323-371.

74 An addition to art galleries with interior walls. Discrete and Computational Geometry, 2001, 25, 311-314.
81 On Degree Properties of Crossing-Critical Families of Craphs. Electronic Journal of Combinatorics, 0.4 ..... 1
82 Generalized Maneuvers in Route Planning. Lecture Notes in Computer Science, 2012, , 155-166. ..... 1.3 ..... 1
83 Bounded Degree Conjecture Holds Precisely for c-Crossing-Critical Graphs with c â\%o 12. Combinatorica, 2022, 42, 701-728. 1.2 ..... 1
Planar emulators conjecture is nearly true for cubic graphs. European Journal of Combinatorics, 2015, 48, 63-70. ..... 0.8 ..... 0
A Simpler Self-reduction Algorithm for Matroid Path-Width. SIAM Journal on Discrete Mathematics, 2018, 32, 1425-1440.
0.80
86 Clique-width of point configurations. Journal of Combinatorial Theory Series B, 2021, , . ..... 1.0 ..... 0
On Degree Properties of Crossing-Critical Families of Graphs. Lecture Notes in Computer Science, 2015, , 75-86.1.30
Practical Exhaustive Generation of Small Multiway Cuts in Sparse Graphs. Lecture Notes in Computer1.3```

