Richard J Cogdell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8195750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carotenoids in Photosynthesis. Photochemistry and Photobiology, 1996, 63, 257-264.	2.5	870
2	Crystal Structure of the RC-LH1 Core Complex from Rhodopseudomonas palustris. Science, 2003, 302, 1969-1972.	12.6	615
3	The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Quarterly Reviews of Biophysics, 2006, 39, 227-324.	5.7	610
4	The Structure and Thermal Motion of the B800–850 LH2 Complex from Rps.acidophila at 2.0Ã Resolution and 100K: New Structural Features and Functionally Relevant Motions. Journal of Molecular Biology, 2003, 326, 1523-1538.	4.2	460
5	Structureâ€Based Calculations of the Optical Spectra of the LH2 Bacteriochlorophyllâ€Protein Complex from <i>Rhodopseudomonas acidophila</i> . Photochemistry and Photobiology, 1996, 64, 564-576.	2.5	303
6	Quantum Coherent Energy Transfer over Varying Pathways in Single Light-Harvesting Complexes. Science, 2013, 340, 1448-1451.	12.6	274
7	Quantum biology revisited. Science Advances, 2020, 6, eaaz4888.	10.3	266
8	Pigment–pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure, 1996, 4, 449-462.	3.3	265
9	Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8493-8498.	7.1	235
10	Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex. Proceedings of the United States of America, 2006, 103, 12672-12677.	7.1	197
11	Carotenoids and Photosynthesis. Sub-Cellular Biochemistry, 2016, 79, 111-139.	2.4	191
12	ABSORPTION SPECTRAL SHIFTS OF CAROTENOIDS RELATED TO MEDIUM POLARIZABILITY. Photochemistry and Photobiology, 1991, 54, 353-360.	2.5	175
13	Absorption and CD Spectroscopy and Modeling of Various LH2 Complexes from Purple Bacteria. Biophysical Journal, 2002, 82, 2184-2197.	0.5	127
14	How carotenoids protect bacterial photosynthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1345-1349.	4.0	124
15	CIRCULAR DICHROISM OF LIGHTâ€HARVESTING COMPLEXES FROM PURPLE PHOTOSYNTHETIC BACTERIA*. Photochemistry and Photobiology, 1985, 42, 669-678.	2.5	113
16	Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching. Nature Communications, 2014, 5, 4236.	12.8	112
17	Energy Transfer and Exciton Annihilation in the B800â~'850 Antenna Complex of the Photosynthetic Purple BacteriumRhodopseudomonas acidophila(Strain 10050). A Femtosecond Transient Absorption Study. Journal of Physical Chemistry B, 1997, 101, 1087-1095.	2.6	110
18	Efficient Energy Transfer from the Carotenoid S2 State in a Photosynthetic Light-Harvesting Complex. Biophysical Journal, 2001, 80, 923-930.	0.5	109

#	Article	IF	CITATIONS
19	Fluorescence Spectral Fluctuations of Single LH2 Complexes from Rhodopseudomonas acidophila Strain 10050. Biochemistry, 2004, 43, 4431-4438.	2.5	102
20	Rings, Ellipses and Horseshoes: How Purple Bacteria Harvest Solar Energy. Photosynthesis Research, 2004, 81, 207-214.	2.9	91
21	Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria. Nature Communications, 2018, 9, 4219.	12.8	86
22	The effect of growth conditions on the light-harvesting apparatus in Rhodopseudomonas acidophila. Photosynthesis Research, 1993, 38, 159-167.	2.9	84
23	Structural Studies of Wild-Type and Mutant Reaction Centers from an Antenna-Deficient Strain of Rhodobacter sphaeroides:  Monitoring the Optical Properties of the Complex from Bacterial Cell to Crystal. Biochemistry, 1998, 37, 4740-4750.	2.5	83
24	Carotenoids and bacterial photosynthesis: The story so far. Photosynthesis Research, 2001, 70, 249-256.	2.9	82
25	Understanding/unravelling carotenoid excited singlet states. Journal of the Royal Society Interface, 2018, 15, 20180026.	3.4	81
26	Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10899-10903.	7.1	78
27	Ubiquinone Binding, Ubiquinone Exclusion, and Detailed Cofactor Conformation in a Mutant Bacterial Reaction Center. Biochemistry, 2000, 39, 15032-15043.	2.5	73
28	The structure and function of the LH2 (B800–850) complex from the purple photosynthetic bacterium Rhodopseudomonas acidophila strain 10050. Progress in Biophysics and Molecular Biology, 1997, 68, 1-27.	2.9	72
29	The structural basis of light-harvesting in purple bacteria. FEBS Letters, 2003, 555, 35-39.	2.8	70
30	Self-Assembled Monolayer of Light-Harvesting Core Complexes from Photosynthetic Bacteria on a Gold Electrode Modified with Alkanethiols. Biomacromolecules, 2007, 8, 2457-2463.	5.4	70
31	Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy. Scientific Reports, 2016, 6, 20834.	3.3	69
32	Crystal Structure of Reduced and of Oxidized Peroxiredoxin IV Enzyme Reveals a Stable Oxidized Decamer and a Non-disulfide-bonded Intermediate in the Catalytic Cycle. Journal of Biological Chemistry, 2011, 286, 42257-42266.	3.4	67
33	The structure and function of bacterial light-harvesting complexes (Review). Molecular Membrane Biology, 2004, 21, 183-191.	2.0	65
34	An <i>Ab Initio</i> Description of the Excitonic Properties of LH2 and Their Temperature Dependence. Journal of Physical Chemistry B, 2016, 120, 11348-11359.	2.6	64
35	Pigment-protein complexes of purple photosynthetic bacteria: An overview. Journal of Cellular Biochemistry, 1983, 22, 159-169 SOLVENT EFFECT ON SPHEROIDENE IN NONPOLAR AND POLAR SOLUTIONS AND THE ENVIRONMENT OF	2.6	63
36	SPHEROIDENE IN THE LIGHTâ€HARVESTING COMPLEXES OF<1>Rhodobacter sphaeroides2.4.1 AS REVEALED BY THE ENERGY OF THE ¹ A _g ^{â[*]} â†' ¹ B _u ⁺ ABSORPTION AND THE FREQUENCIES OF THE VIBRONICALLY COUPLED C=C STRETCHING RAMAN LINES IN THE ¹ A _g ^{â[*]} AND ¹ B _u ^{â[*]} STATES. Pho	2.5	63

#	Article	IF	CITATIONS
37	Single-Molecule Spectroscopy Reveals that Individual Low-Light LH2 Complexes from Rhodopseudomonas palustris 2.1.6. Have a Heterogeneous Polypeptide Composition. Biophysical Journal, 2009, 97, 1491-1500.	0.5	63
38	Natural and artificial light-harvesting systems utilizing the functions of carotenoids. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 46-70.	11.6	63
39	A further characterisation of the B890 light-harvesting pigment-protein complex from Rhodospirillum rubrum strain S1. FEBS Letters, 1982, 150, 151-154.	2.8	59
40	The role of charge-transfer states in the spectral tuning of antenna complexes of purple bacteria. Photosynthesis Research, 2018, 137, 215-226.	2.9	59
41	Unified explanation for linear and nonlinear optical responses inl²-carotene: A sub-20â^'fsdegenerate four-wave mixing spectroscopic study. Physical Review B, 2007, 75, .	3.2	57
42	Artificial photosynthesis – solar fuels: current status and future prospects. Biofuels, 2010, 1, 861-876.	2.4	56
43	Lectin-Like Bacteriocins from Pseudomonas spp. Utilise D-Rhamnose Containing Lipopolysaccharide as a Cellular Receptor. PLoS Pathogens, 2014, 10, e1003898.	4.7	56
44	A Highly Conserved Bacterial D-Serine Uptake System Links Host Metabolism and Virulence. PLoS Pathogens, 2016, 12, e1005359.	4.7	55
45	A comparison of the primary structures of the two B800-850-apoproteins from wild-type Rhodopseudomonas sphaeroides strain 2.4.1 and a carotenoidless mutant strain R26.1. FEBS Letters, 1984, 175, 231-237.	2.8	54
46	Transient EPR and Absorption Studies of Carotenoid Triplet Formation in Purple Bacterial Antenna Complexes. Journal of Physical Chemistry B, 2001, 105, 5525-5535.	2.6	53
47	Isolation and characterisation of the different B800–850 light-harvesting complexes from low- and high-light grown cells of Rhodopseudomonas palustris, strain 2.1.6. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1016, 71-76.	1.0	52
48	Femtosecond Energy-Transfer Dynamics between Bacteriochlorophylls in the B800â^'820 Antenna Complex of the Photosynthetic Purple Bacterium Rhodopseudomonas acidophila (Strain 7750). Journal of Physical Chemistry B, 1998, 102, 881-887.	2.6	51
49	Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1576-1587.	1.0	50
50	Femtosecond dynamics of carotenoid-to-bacteriochlorophyll a energy transfer in the light-harvesting antenna complexes from the purple bacterium Chromatium purpuratum. Chemical Physics, 1996, 210, 195-217.	1.9	49
51	Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. Journal of Chemical Physics, 2015, 142, 212434.	3.0	48
52	Length, time, and energy scales of photosystems. Advances in Protein Chemistry, 2003, 63, 71-109.	4.4	47
53	Carotenoid-Bacteriochlorophyll Energy Transfer in LH2 Complexes Studied with 10-fs Time Resolution. Biophysical Journal, 2006, 90, 2486-2497.	0.5	46
54	Hijacking the Hijackers: Escherichia coli Pathogenicity Islands Redirect Helper Phage Packaging for Their Own Benefit. Molecular Cell, 2019, 75, 1020-1030.e4.	9.7	45

#	Article	IF	CITATIONS
55	The host metabolite D-serine contributes to bacterial niche specificity through gene selection. ISME Journal, 2015, 9, 1039-1051.	9.8	43
56	Refinement of the x-ray structure of the RC LH1 core complex from Rhodopseudomonas palustris by single-molecule spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20280-20284.	7.1	42
57	The Light-Harvesting System of Purple Bacteria. Advances in Photosynthesis and Respiration, 2003, , 169-194.	1.0	42
58	X-ray crystal structure of the YM210W mutant reaction centre from Rhodobacter sphaeroides. FEBS Letters, 2000, 467, 285-290.	2.8	41
59	Exciton Self Trapping in Photosynthetic Pigment–Protein Complexes Studied by Single-Molecule Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 11017-11023.	2.6	41
60	The polypeptide composition of the B850 light-harvesting pigment-protein complex fromRhodopseudomonas sphaeroides, R26.1. FEBS Letters, 1981, 132, 81-84.	2.8	40
61	Before Förster. Initial excitation in photosynthetic light harvesting. Chemical Science, 2019, 10, 7923-7928.	7.4	38
62	Single-Molecule Spectroscopic Characterization of Light-Harvesting 2 Complexes Reconstituted into Model Membranes. Biophysical Journal, 2007, 93, 183-191.	0.5	37
63	Peripheral Complexes of Purple Bacteria. Advances in Photosynthesis and Respiration, 2009, , 135-153.	1.0	37
64	Selective Assembly of Photosynthetic Antenna Proteins into a Domain-Structured Lipid Bilayer for the Construction of Artificial Photosynthetic Antenna Systems: Structural Analysis of the Assembly Using Surface Plasmon Resonance and Atomic Force Microscopy. Langmuir, 2011, 27, 1092-1099.	3.5	36
65	The location of the carotenoid in the B800-850 light-harvesting pigment-protein complex from rhodopseudomonas capsulata. FEBS Letters, 1980, 111, 391-394.	2.8	35
66	The structures of SO spheroidene in the light-harvesting (LH2) complex and SO and T1 spheroidene in the reaction center of Rhodobacter sphaeroides 2.4.1 as revealed by Raman spectroscopy. Biospectroscopy, 1998, 2, 59-69.	0.6	35
67	Ultrafast energy relaxation in single light-harvesting complexes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2934-2939.	7.1	35
68	The effect of chemical oxidation on the fluorescence of the LH1 (B880) complex from the purple bacterium Rhodobium marinum. FEBS Letters, 1998, 432, 27-30.	2.8	34
69	Energy transfer from carotenoid to bacteriochlorophyll a in the B800-820 antenna complexes from Rhodopseudomonas acidophila strain 7050. FEBS Letters, 1988, 235, 169-172.	2.8	33
70	Use of single-molecule spectroscopy to tackle fundamental problems in biochemistry: using studies on purple bacterial antenna complexes as an example. Biochemical Journal, 2009, 422, 193-205.	3.7	33
71	The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium. Biochemical Journal, 2011, 440, 51-61.	3.7	33
72	Energy dissipation in the ground-state vibrational manifolds of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>l² </mml:mi> -carotene homologues: A sub-20-fs time-resolved transient grating spectroscopic study. Physical Review B, 2008, 77, .</mml:math 	3.2	31

#	Article	IF	CITATIONS
73	Low Light Adaptation: Energy Transfer Processes in Different Types of Light Harvesting Complexes from Rhodopseudomonas palustris. Biophysical Journal, 2009, 97, 3019-3028.	0.5	31
74	Characterisation of the LH2 spectral variants produced by the photosynthetic purple sulphur bacterium Allochromatium vinosum. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1849-1860.	1.0	31
75	Isolation and characterisation of an unusual antenna complex from the marine purple sulphur photosynthetic bacterium Chromatium purpuratum BN5500. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1019, 239-244.	1.0	29
76	Quieting a noisy antenna reproduces photosynthetic light-harvesting spectra. Science, 2020, 368, 1490-1495.	12.6	29
77	Bacteriochlorin-protein interactions in native B800-B850, B800 deficient and B800-Bchlap-reconstituted complexes fromRhodopseudomonas acidophila, strain 10050. FEBS Letters, 1999, 449, 269-272.	2.8	28
78	Preparation, Purification, and Crystallization of Purple Bacteria Antenna Complexes. , 1993, , 23-42.		27
79	Renewables need a grand-challenge strategy. Nature, 2016, 538, 30-30.	27.8	27
80	Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. Journal of Physical Chemistry B, 2019, 123, 8628-8643.	2.6	27
81	Reaction centre carotenoid band shifts. FEBS Letters, 1977, 80, 190-194.	2.8	26
82	An examination of how structural changes can affect the rate of electron transfer in a mutated bacterial photoreaction centre. Biochemical Journal, 2000, 351, 567-578.	3.7	26
83	Structure of the bacterial plant-ferredoxin receptor FusA. Nature Communications, 2016, 7, 13308.	12.8	26
84	Simulating Fluorescence-Detected Two-Dimensional Electronic Spectroscopy of Multichromophoric Systems. Journal of Physical Chemistry B, 2019, 123, 394-406.	2.6	26
85	The 2.4 Ã cryo-EM structure of a heptameric light-harvesting 2 complex reveals two carotenoid energy transfer pathways. Science Advances, 2021, 7, .	10.3	26
86	Linear-Dichroism Measurements on the LH2 Antenna Complex of Rhodopseudomonas Acidophila Strain 10050 Show that the Transition Dipole Moment of the Carotenoid Rhodopin Glucoside Is Not Collinear with the Long Molecular Axis. Journal of Physical Chemistry B, 2003, 107, 655-658.	2.6	25
87	Electroabsorption spectroscopy ofl²-carotene homologs: Anomalous enhancement ofl̃"ll⁄4. Physical Review B, 2005, 71, .	3.2	25
88	Structures of the Ultra-High-Affinity Protein–Protein Complexes of Pyocins S2 and AP41 and Their Cognate Immunity Proteins from Pseudomonas aeruginosa. Journal of Molecular Biology, 2015, 427, 2852-2866.	4.2	25
89	The structural basis of non-photochemical quenching is revealed?. Trends in Plant Science, 2006, 11, 59-60.	8.8	24
90	Excitation-energy dependence of transient grating spectroscopy in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>î²</mml:mi>-carotene. Physical Review B, 2009, 80, .</mml:math 	3.2	22

#	Article	IF	CITATIONS
91	A comparative look at structural variation among RC–LH1 â€~Core' complexes present in anoxygenic phototrophic bacteria. Photosynthesis Research, 2020, 145, 83-96.	2.9	22
92	Comparison of transient grating signals from spheroidene in an organic solvent and in pigment-protein complexes from <i>Rhodobacter sphaeroides</i> 2.4.1. Physical Review B, 2010, 81, .	3.2	21
93	Pushing the Photon Limit: Nanoantennas Increase Maximal Photon Stream and Total Photon Number. Journal of Physical Chemistry Letters, 2016, 7, 1604-1609.	4.6	20
94	Primary reactions in photosynthetic reaction centers of Rhodobacter sphaeroides – Time constants of the initial electron transfer. Chemical Physics Letters, 2014, 601, 103-109.	2.6	19
95	Vibronic coupling in the excited-states of carotenoids. Physical Chemistry Chemical Physics, 2016, 18, 11443-11453.	2.8	19
96	Title is missing!. Photosynthesis Research, 1997, 52, 157-165.	2.9	18
97	Direct Visualization of Exciton Reequilibration in the LH1 and LH2 Complexes of Rhodobacter sphaeroides by Multipulse Spectroscopy. Biophysical Journal, 2011, 100, 2226-2233.	0.5	18
98	Single-Molecule Spectroscopy Unmasks the Lowest Exciton State of the B850 Assembly in LH2 from Rps. acidophila. Biophysical Journal, 2014, 106, 2008-2016.	0.5	18
99	Crystallographic studies of mutant reaction centres from Rhodobacter sphaeroides. Photosynthesis Research, 1998, 55, 133-140.	2.9	17
100	Probing the binding sites of exchanged chlorophyllain LH2 by Raman and site-selection fluorescence spectroscopies. FEBS Letters, 2001, 491, 143-147.	2.8	17
101	An improved crystal structure of C-phycoerythrin from the marine cyanobacterium Phormidium sp. A09DM. Photosynthesis Research, 2018, 135, 65-78.	2.9	17
102	Fluorescence-Excitation and Emission Spectra from LH2 Antenna Complexes of Rhodopseudomonas acidophila as a Function of the Sample Preparation Conditions. Journal of Physical Chemistry B, 2013, 117, 12020-12029.	2.6	16
103	Learning from photosynthesis: how to use solar energy to make fuels. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 3819-3826.	3.4	15
104	Conformational Memory of a Protein Revealed by Single-Molecule Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 13964-13970.	2.6	15
105	Photocurrent Generation by Photosynthetic Purple Bacterial Reaction Centers Interfaced with a Porous Antimony-Doped Tin Oxide (ATO) Electrode. ACS Applied Materials & Interfaces, 2016, 8, 25104-25110.	8.0	15
106	Characterisation of a pucBA deletion mutant from Rhodopseudomonas palustris lacking all but the pucBAd genes. Photosynthesis Research, 2018, 135, 9-21.	2.9	15
107	The use and misuse of photosynthesis in the quest for novel methods to harness solar energy to make fuel. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20110603.	3.4	14
108	Silver island film substrates for ultrasensitive fluorescence detection of (bio)molecules. Photosynthesis Research, 2016, 127, 103-108.	2.9	14

#	Article	IF	CITATIONS
109	The effect of changes in light intensity and temperature on the peripheral antenna of <u>Rhodopseudomonas acidophila</u> . Biochemical Society Transactions, 1993, 21, 6S-6S.	3.4	13
110	Origin of the Two Bands in the B800 Ring and Their Involvement in the Energy Transfer Network of <i>Allochromatium vinosum</i> . Journal of Physical Chemistry Letters, 2018, 9, 1340-1345.	4.6	13
111	Robust light harvesting by a noisy antenna. Physical Chemistry Chemical Physics, 2018, 20, 4360-4372.	2.8	13
112	The purple heart of photosynthesis. Nature, 2014, 508, 196-197.	27.8	12
113	Assessing density functional theory in real-time and real-space as a tool for studying bacteriochlorophylls and the light-harvesting complex 2. Journal of Chemical Physics, 2019, 151, 134114.	3.0	12
114	Structure of protease-cleaved <i>Escherichia coli</i> α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1478-1486.	2.5	11
115	Multi-Level, Multi Time-Scale Fluorescence Intermittency of Photosynthetic LH2 Complexes: A Precursor of Non-Photochemical Quenching?. Journal of Physical Chemistry B, 2015, 119, 13958-13963.	2.6	11
116	Localization of the reaction-centre subunits in the intracytoplasmic membranes of <i>Rhodopseudomonas sphaeroides</i> and <i>Rhodopseudomonas capsulata</i> . Biochemical Society Transactions, 1980, 8, 184-185.	3.4	10
117	Structures and binding specificity of galactose- and mannose-binding lectins from champedak: differences from jackfruit lectins. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 709-716.	0.8	10
118	Activated OCP unlocks nonphotochemical quenching in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12547-12548.	7.1	10
119	Site, trigger, quenching mechanism and recovery of non-photochemical quenching in cyanobacteria: recent updates. Photosynthesis Research, 2018, 137, 171-180.	2.9	10
120	Title is missing!. Photosynthesis Research, 1999, 59, 223-230.	2.9	9
121	Purple Bacterial Light-harvesting Complexes: From Dreams to Structures. Photosynthesis Research, 2004, 80, 173-179.	2.9	9
122	Statistical considerations on the formation of circular photosynthetic light-harvesting complexes from Rhodopseudomonas palustris. Photosynthesis Research, 2014, 121, 49-60.	2.9	9
123	Fluorescence-excitation and Emission Spectroscopy on Single FMO Complexes. Scientific Reports, 2016, 6, 31875.	3.3	9
124	Conformational Complexity in the LH2 Antenna of the Purple Sulfur Bacterium <i>Allochromatium vinosum</i> Revealed by Hole-Burning Spectroscopy. Journal of Physical Chemistry A, 2017, 121, 4435-4446.	2.5	9
125	Solar fuels and inspiration from photosynthesis. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 645-653.	3.9	9
126	Intraband dynamics and exciton trapping in the LH2 complex of Rhodopseudomonas acidophila. Journal of Chemical Physics, 2021, 154, 045102.	3.0	9

#	Article	IF	CITATIONS
127	The use of non-denaturing Deriphat-polyacrylamide gel electrophoresis to fractionate pigment-protein complexes of purple bacteria. Photosynthesis Research, 1991, 30, 139-143.	2.9	8
128	Structures and functions of carotenoids bound to reaction centers from purple photosynthetic bacteria. Pure and Applied Chemistry, 2006, 78, 1505-1518.	1.9	8
129	The Evolution of the Purple Photosynthetic Bacterial Light-Harvesting System. Advances in Botanical Research, 2013, 66, 205-226.	1.1	8
130	Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities. Photosynthesis Research, 2018, 137, 389-402.	2.9	8
131	Low-Frequency Vibronic Mixing Modulates the Excitation Energy Flow in Bacterial Light-Harvesting Complex II. Journal of Physical Chemistry Letters, 2021, 12, 6292-6298.	4.6	8
132	Vibrational Modes Promoting Exciton Relaxation in the B850 Band of LH2. Journal of Physical Chemistry Letters, 2022, 13, 1099-1106.	4.6	8
133	Introduction. Photosynthesis Research, 2008, 95, 117-117.	2.9	7
134	Generation of coherently coupled vibronic oscillations in carotenoids. Physical Review B, 2012, 85, .	3.2	7
135	Fluorescence enhancement of photosynthetic complexes separated from nanoparticles by a reduced graphene oxide layer. Applied Physics Letters, 2014, 104, 093103.	3.3	7
136	DNA-directed spatial assembly of photosynthetic light-harvesting proteins. Organic and Biomolecular Chemistry, 2016, 14, 1359-1362.	2.8	7
137	The localization of the light-harvesting complexes in the intracytoplasmic membranes of <i>Rhodopseudomonas capsulata</i> . Biochemical Society Transactions, 1980, 8, 329-329.	3.4	6
138	Effect of inhomogeneous band broadening on the nonlinear optical properties of hydrazones. Physical Review B, 2004, 69, .	3.2	6
139	The Subunit Structure of the B800–850 Light-Harvesting Pigment Protein Complex from <i>Rhodopseudomonas sphaeroides</i> Strain 2.4.1. Biochemical Society Transactions, 1979, 7, 184-187.	3.4	5
140	Origin of bimodal fluorescence enhancement factors of <i>Chlorobaculum tepidum</i> reaction centers on silver island films. FEBS Letters, 2016, 590, 2558-2565.	2.8	5
141	Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum. Photosynthesis Research, 2016, 127, 171-187.	2.9	5
142	On Light-Induced Photoconversion of B800 Bacteriochlorophylls in the LH2 Antenna of the Purple Sulfur Bacterium <i>Allochromatium vinosum</i> . Journal of Physical Chemistry B, 2017, 121, 9999-10006.	2.6	5
143	Photocrosslinking between nucleic acids and proteins: general discussion. Faraday Discussions, 2018, 207, 283-306.	3.2	5
144	Crystal structure of phycocyanin from heterocyst-forming filamentous cyanobacterium Nostoc sp. WR13. International Journal of Biological Macromolecules, 2019, 135, 62-68.	7.5	5

#	Article	IF	CITATIONS
145	Revisiting high-resolution crystal structure of Phormidium rubidum phycocyanin. Photosynthesis Research, 2020, 144, 349-360.	2.9	5
146	Time-Domain Line-Shape Analysis from 2D Spectroscopy to Precisely Determine Hamiltonian Parameters for a Photosynthetic Complex. Journal of Physical Chemistry B, 2021, 125, 2812-2820.	2.6	5
147	Cloning and sequencing of the pucBA genes from two strains of Rubrivivax gelatinosus. Photosynthesis Research, 1999, 62, 99-106.	2.9	4
148	Multichannel Flash Spectroscopy of the Reaction Centers of Wildâ€type and Mutant <i>Rhodobacter sphaeroides</i> : Bacteriochlorophyll _{<i>B</i>} â€mediated Interaction Between the Carotenoid Triplet and the Special Pair [¶] ^{â€} . Photochemistry and Photobiology, 2004, 79, 68-75.	2.5	4
149	The Structure of Purple Bacterial Antenna Complexes. , 0, , 325-340.		4
150	Recombinant expression, purification, crystallization and preliminary X-ray diffraction analysis of the C-terminal DUF490963–1138domain of TamB fromEscherichia coli. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1272-1275.	0.8	4
151	Contribution of low-temperature single-molecule techniques to structural issues of pigment–protein complexes from photosynthetic purple bacteria. Journal of the Royal Society Interface, 2018, 15, 20170680.	3.4	4
152	Spectrally selective fluorescence imaging of Chlorobaculum tepidum reaction centers conjugated to chelator-modified silver nanowires. Photosynthesis Research, 2018, 135, 329-336.	2.9	4
153	Room-Temperature Excitation–Emission Spectra of Single LH2 Complexes Show Remarkably Little Variation. Journal of Physical Chemistry Letters, 2020, 11, 2430-2435.	4.6	4
154	Purple-bacterial light-harvesting complexes. Biochemical Society Transactions, 1986, 14, 4-5.	3.4	3
155	Quantum chemical elucidation of a sevenfold symmetric bacterial antenna complex. Photosynthesis Research, 2023, 156, 75-87.	2.9	3
156	The structure of the bacterial photosynthetic unit. Biochemical Society Transactions, 1982, 10, 334-335.	3.4	2
157	Crystallising the LH1-RC "core―complex of purple bacteria. Biochemical Society Transactions, 1998, 26, S160-S160.	3.4	2
158	Crystallization and preliminary X-ray diffraction analysis of the peripheral light-harvesting complex LH2 from <i>Marichromatium purpuratum</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 808-813.	0.8	2
159	Photochemical Reactions Centre of Photosynthetic Bacteria. Biochemical Society Transactions, 1979, 7, 1228-1231.	3.4	1
160	A progress report on the crystallographic studies on the B800–850 antenna complex from Rhodopseudomonas acidophila strain 10050. Biochemical Society Transactions, 1993, 21, 39-40.	3.4	1
161	Dihydrolipoamide dehydrogenase in plants: differences in the mitochondrial and chloroplastic forms. Biochemical Society Transactions, 1993, 21, 38S-38S.	3.4	1
162	Overview of the work of the BBSRC's Membrane Protein Structure initiative. Molecular Membrane Biology, 2008, 25, 585-587.	2.0	1

#	Article	IF	CITATIONS
163	Light induced charge and energy transport in nucleic acids and proteins: general discussion. Faraday Discussions, 2018, 207, 153-180.	3.2	1
164	Photosynthesis The Purple Photosynthetic Bacterial Light Harvesting System. , 2021, , 291-304.		1
165	The lipids of Rhodopseudomonas acidophila strain 10050 as possible influences on the crystallisation of the B800–850 complex from this bacterium. Biochemical Society Transactions, 1993, 21, 5S-5S.	3.4	0
166	Photophysical Characterization of Natural cis-Carotenoids¶. Photochemistry and Photobiology, 2007, 74, 549-557.	2.5	0
167	Quantum coherence explored at the level of individual light-harvesting complexes. , 2013, , .		0
168	Introduction to the 49ersâ \in M special issue. Photosynthesis Research, 2016, 127, 1-3.	2.9	0
169	Light induced damage and repair in nucleic acids and proteins: general discussion. Faraday Discussions, 2018, 207, 389-408.	3.2	0
170	Bionanophotonics: general discussion. Faraday Discussions, 2018, 207, 491-512.	3.2	0
171	Reviewers in 2020. Journal of the Royal Society Interface, 2021, 18, .	3.4	0