yann Klinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8195738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Late Quaternary Slip Rate of the Zihong Shan Branch and Its Implications for Strain Partitioning Along the Haiyuan Fault, Northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	5
2	Imprint of the Continental Strike‣lip Fault Geometrical Structure in Geophysical Data. Geophysical Research Letters, 2022, 49, .	4.0	3
3	Late Pleistocene slip rate of the central Haiyuan fault constrained from optically stimulated luminescence, 14C, and cosmogenic isotope dating and high-resolution topography. Bulletin of the Geological Society of America, 2021, 133, 1347-1369.	3.3	18
4	Active Faults' Geometry in the Gulf of Aqaba, Southern Dead Sea Fault, Illuminated by Multibeam Bathymetric Data. Tectonics, 2021, 40, e2020TC006443.	2.8	25
5	Assessing the brittle crust thickness from strike-slip fault segments on Earth, Mars and Icy moons. Tectonophysics, 2021, 805, 228779.	2.2	8
6	Interseismic deformation in the Gulf of Aqaba from GPS measurements. Geophysical Journal International, 2021, 228, 477-492.	2.4	3
7	25,000 Years long seismic cycle in a slow deforming continental region of Mongolia. Scientific Reports, 2021, 11, 17855.	3.3	8
8	Fault Segmentation Pattern Controlled by Thickness of Brittle Crust. Geophysical Research Letters, 2021, 48, e2021GL093390.	4.0	15
9	Segmentation and Holocene Behavior of the Middle Strand of the North Anatolian Fault (NW Turkey). Tectonics, 2021, 40, e2021TC006870.	2.8	3
10	Signature of transition to supershear rupture speed in the coseismic off-fault damage zone. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210364.	2.1	6
11	Influence of fault roughness on surface displacement: from numerical simulations to coseismic slip distributions. Geophysical Journal International, 2020, 220, 1857-1877.	2.4	26
12	Complex Deformation at Shallow Depth During the 30 October 2016 M w 6.5 Norcia Earthquake: Interference Between Tectonic and Gravity Processes?. Tectonics, 2020, 39, e2019TC005596.	2.8	21
13	Source Model of the 2014 MwÂ6.9 Yutian Earthquake at the Southwestern End of the Altyn Tagh Fault in Tibet Estimated from Satellite Images. Seismological Research Letters, 2020, 91, 3161-3170.	1.9	9
14	Experimental evidence for crustal control over seismic fault segmentation. Geology, 2020, 48, 844-848.	4.4	17
15	Fault Geometry and Slip Distribution of the 2013 Mw 7.7 Balochistan Earthquake From Inversions of SAR and Optical Data. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018380.	3.4	14
16	Detailed map, displacement, paleoseismology, and segmentation of the Enriquillo-Plantain Garden Fault in Haiti. Tectonophysics, 2020, 778, 228368.	2.2	22
17	Dynamics, Radiation, and Overall Energy Budget of Earthquake Rupture With Coseismic Offâ€Fault Damage. Journal of Geophysical Research: Solid Earth, 2019, 124, 11771-11801. 	3.4	93
18	Post Earthquake Aggradation Processes to Hide Surface Ruptures in Thrust Systems: The M8.3, 1934, Biharâ€Nepal Earthquake Ruptures at Charnath Khola (Eastern Nepal). Journal of Geophysical Research: Solid Earth, 2019, 124, 9182-9207.	3.4	21

#	Article	IF	CITATIONS
19	Lower Crustal Heterogeneity Beneath the Northern Tibetan Plateau Constrained by GPS Measurements Following the 2001 Mw7.8 Kokoxili Earthquake. Journal of Geophysical Research: Solid Earth, 2019, 124, 11992-12022.	3.4	20
20	Late Pleistoceneâ€Holocene Slip Rate Along the Hasi Shan Restraining Bend of the Haiyuan Fault: Implication for Faulting Dynamics of a Complex Fault System. Tectonics, 2019, 38, 4127-4154.	2.8	17
21	Earthquake crisis unveils the growth of an incipient continental fault system. Nature Communications, 2019, 10, 3482.	12.8	24
22	Reevaluation of the Late Pleistocene Slip Rate of the Haiyuan Fault Near Songshan, Gansu Province, China. Journal of Geophysical Research: Solid Earth, 2019, 124, 5217-5240.	3.4	35
23	The 2016 M7 Kumamoto, Japan, Earthquake Slip Field Derived From a Joint Inversion of Differential Lidar Topography, Optical Correlation, and InSAR Surface Displacements. Geophysical Research Letters, 2019, 46, 6341-6351.	4.0	30
24	Active tectonics along the Cul-de-Sac – Enriquillo plain and seismic hazard for Port-au-Prince, Haiti. Tectonophysics, 2019, 771, 228235.	2.2	9
25	Similarities between mode III crack growth patterns and strike-slip faults. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20170392.	3.4	9
26	Rifting Processes at a Continentâ€Ocean Transition Rift Revealed by Fault Analysis: Example of Dabbahuâ€Mandaâ€Hararo Rift (Ethiopia). Tectonics, 2019, 38, 190-214.	2.8	6
27	A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy. Scientific Data, 2018, 5, 180049.	5.3	89
28	High-resolution stratigraphy and multiple luminescence dating techniques to reveal the paleoseismic history of the central Dead Sea fault (Yammouneh fault, Lebanon). Tectonophysics, 2018, 738-739, 1-15.	2.2	8
29	Geologic Inheritance and Earthquake Rupture Processes: The 1905 MÂ≥Â8 Tsetserlegâ€Bulnay Strikeâ€Slip Earthquake Sequence, Mongolia. Journal of Geophysical Research: Solid Earth, 2018, 123, 1925-1953.	3.4	53
30	Slip deficit and temporal clustering along the Dead Sea fault from paleoseismological investigations. Scientific Reports, 2018, 8, 4511.	3.3	39
31	Horizontal surface-slip distribution through several seismic cycles: The Eastern Bogd fault, Gobi-Altai, Mongolia. Tectonophysics, 2018, 734-735, 167-182.	2.2	32
32	Variable slip-rate and slip-per-event on a plate boundary fault: The Dead Sea fault in northern Israel. Tectonophysics, 2018, 722, 210-226.	2.2	27
33	Earthquake Damage Patterns Resolve Complex Rupture Processes. Geophysical Research Letters, 2018, 45, 10,279.	4.0	74
34	Surface ruptures following the 30 October 2016 <i>M</i> _w 6.5 Norcia earthquake, central Italy. Journal of Maps, 2018, 14, 151-160.	2.0	121
35	Which Fault Segments Ruptured in the 2008 Wenchuan Earthquake and Which Did Not? New Evidence from Nearâ€Fault 3D Surface Displacements Derived from SAR Image Offsets. Bulletin of the Seismological Society of America, 2017, 107, 1185-1200.	2.3	29
36	Magma influence on propagation of normal faults: Evidence from cumulative slip profiles along Dabbahu-Manda-Hararo rift segment (Afar, Ethiopia). Journal of Structural Geology, 2017, 95, 48-59.	2.3	37

#	Article	IF	CITATIONS
37	High-resolution mapping based on an Unmanned Aerial Vehicle (UAV) to capture paleoseismic offsets along the Altyn-Tagh fault, China. Scientific Reports, 2017, 7, 8281.	3.3	35
38	Recent progress in studies on the characteristics of surface rupture associated with large earthquakes. Journal of the Geological Society of Korea, 2017, 53, 129-157.	0.7	24
39	Crustal accretion at a sedimented spreading center in the Andaman Sea. Geology, 2016, 44, 351-354.	4.4	22
40	Geological structures control on earthquake ruptures: The <i>M_w</i> 7.7, 2013, Balochistan earthquake, Pakistan. Geophysical Research Letters, 2016, 43, 10,155.	4.0	34
41	Slip deficit in central Nepal: omen for a repeat of the 1344 AD earthquake?. Earth, Planets and Space, 2016, 68, .	2.5	89
42	Surface displacements on faults triggered by slow magma transfers between dyke injections in the 2005–2010 rifting episode at Dabbahu–Manda–Hararo rift (Afar, Ethiopia). Geophysical Journal International, 2016, 204, 399-417.	2.4	19
43	Rupture process of the <i>M_w</i> = 7.9 2015 Gorkha earthquake (Nepal): Insights into Himalayan megathrust segmentation. Geophysical Research Letters, 2015, 42, 8373-8382.	4.0	170
44	Variability in magnitude of paleoearthquakes revealed by trenching and historical records, along the Haiyuan Fault, China. Journal of Geophysical Research: Solid Earth, 2015, 120, 8304-8333.	3.4	51
45	5000 yr of paleoseismicity along the southern Dead Sea fault. Geophysical Journal International, 2015, 202, 313-327.	2.4	49
46	Seismotectonics of southern Haiti: A new faulting model for the 12 January 2010 <i>M</i> 7.0 earthquake. Geophysical Research Letters, 2015, 42, 10,273.	4.0	26
47	The Burstâ€Like Behavior of Aseismic Slip on a Rough Fault: The Creeping Section of the Haiyuan Fault, China. Bulletin of the Seismological Society of America, 2015, 105, 480-488.	2.3	41
48	Variable behavior of the Dead Sea Fault along the southern Arava segment from GPS measurements. Comptes Rendus - Geoscience, 2015, 347, 161-169.	1.2	46
49	Modes and rates of horizontal deformation from rotated river basins: Application to the Dead Sea fault system in Lebanon. Geology, 2015, 43, 843-846.	4.4	47
50	Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 100, 48-59.	11.1	114
51	Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data. Tectonophysics, 2015, 638, 43-62.	2.2	156
52	Probing large intraplate earthquakes at the west flank of the Andes. Geology, 2014, 42, 1083-1086.	4.4	54
53	Localized slip and distributed deformation in oblique settings: the example of the Denali fault system, Alaska. Geophysical Journal International, 2014, 197, 1284-1298.	2.4	22
54	A Paleoseismic Record of Earthquakes for the Dead Sea Transform Fault between the First and Seventh Centuries C.E.: Nonperiodic Behavior of a Plate Boundary Fault. Bulletin of the Seismological Society of America, 2014, 104, 1329-1347.	2.3	32

#	Article	IF	CITATIONS
55	Estimating the return times of great Himalayan earthquakes in eastern Nepal: Evidence from the Patu and Bardibas strands of the Main Frontal Thrust. Journal of Geophysical Research: Solid Earth, 2014, 119, 7123-7163.	3.4	182
56	Review of On-Fault Palaeoseismic Studies Along the Dead Sea Fault. Modern Approaches in Solid Earth Sciences, 2014, , 183-205.	0.3	30
57	Imaging normal faults in alluvial fans using geophysical techniques: Field example from the coast of Gulf of Aqaba, Saudi Arabia. , 2014, , .		6
58	Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nature Geoscience, 2013, 6, 71-76.	12.9	288
59	Surface Rupture and Slip Distribution of the 1940 Imperial Valley Earthquake, Imperial Fault, Southern California: Implications for Rupture Segmentation and Dynamics. Bulletin of the Seismological Society of America, 2013, 103, 629-640.	2.3	73
60	Inference of Multiple Earthquake-Cycle Relaxation Timescales from Irregular Geodetic Sampling of Interseismic Deformation. Bulletin of the Seismological Society of America, 2013, 103, 2824-2835.	2.3	64
61	Seismotectonics of the 2008 and 2009 Qaidam Earthquakes and its Implication for Regional Tectonics. Acta Geologica Sinica, 2013, 87, 618-628.	1.4	12
62	Sismotectonique du tremblement de terre du 12 janvier 2010 en HaÃ⁻ti. Outre-Terre, 2013, n° 35-36, 163-183.	0.0	1
63	Complex surface rupturing and related formation mechanisms in the Xiaoyudong area for the 2008 Mw 7.9 Wenchuan Earthquake, China. Journal of Asian Earth Sciences, 2012, 58, 132-142.	2.3	20
64	Quaternary morphotectonic mapping of the Wadi Araba and implications for the tectonic activity of the southern Dead Sea fault. Tectonics, 2012, 31, .	2.8	32
65	Roughness of fault surfaces over nine decades of length scales. Journal of Geophysical Research, 2012, 117, .	3.3	251
66	Localised and distributed deformation in the lithosphere: Modelling the Dead Sea region in 3 dimensions. Earth and Planetary Science Letters, 2011, 308, 172-184.	4.4	26
67	Characteristic slip for five great earthquakes along the Fuyun fault in China. Nature Geoscience, 2011, 4, 389-392.	12.9	170
68	Ejection Landslide at Northern Terminus of Beichuan Rupture Triggered by the 2008 Mw 7.9 Wenchuan Earthquake. Bulletin of the Seismological Society of America, 2010, 100, 2689-2699.	2.3	26
69	Measuring radon flux across active faults: Relevance of excavating and possibility of satellite discharges. Radiation Measurements, 2010, 45, 211-218.	1.4	46
70	The M w 7.9, 12 May 2008 Sichuan earthquake rupture measured by sub-pixel correlation of ALOS PALSAR amplitude images. Earth, Planets and Space, 2010, 62, 875-879.	2.5	25
71	Structural Setting of the 2008 Mw 7.9 Wenchuan, China, Earthquake. Bulletin of the Seismological Society of America, 2010, 100, 2713-2735.	2.3	155
72	Fault-Scarp Features and Cascading-Rupture Model for the Mw 7.9 Wenchuan Earthquake, Eastern Tibetan Plateau, China. Bulletin of the Seismological Society of America, 2010, 100, 2590-2614.	2.3	73

#	Article	IF	CITATIONS
73	Relation between continental strikeâ€slip earthquake segmentation and thickness of the crust. Journal of Geophysical Research, 2010, 115, .	3.3	132
74	Early Holocene and Late Pleistocene slip rates of the southern Dead Sea Fault determined from ¹⁰ Be cosmogenic dating of offset alluvial deposits. Journal of Geophysical Research, 2010, 115, .	3.3	33
75	Introduction to the Special Issue on the 2008 Wenchuan, China, Earthquake. Bulletin of the Seismological Society of America, 2010, 100, 2353-2356.	2.3	20
76	Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology, 2009, 37, 515-518.	4.4	700
77	Palaeoseismology of the North Anatolian Fault near the Marmara Sea: implications for fault segmentation and seismic hazard. Geological Society Special Publication, 2009, 316, 31-54.	1.3	38
78	September 2005 Manda Hararoâ€Dabbahu rifting event, Afar (Ethiopia): Constraints provided by geodetic data. Journal of Geophysical Research, 2009, 114, .	3.3	129
79	Rupture behavior and deformation localization of the Kunlunshan earthquake (M w 7.8) and their tectonic implications. Science in China Series D: Earth Sciences, 2008, 51, 1361-1374.	0.9	13
80	Slip rate and locking depth from GPS profiles across the southern Dead Sea Transform. Journal of Geophysical Research, 2008, 113, .	3.3	109
81	The 14 November 2001 Kokoxili (Tibet) earthquake: Highâ€frequency seismic radiation originating from the transitions between subâ€Rayleigh and supershear rupture velocity regimes. Journal of Geophysical Research, 2008, 113, .	3.3	67
82	12,000-Year-Long Record of 10 to 13 Paleoearthquakes on the Yammouneh Fault, Levant Fault System, Lebanon. Bulletin of the Seismological Society of America, 2007, 97, 749-771.	2.3	88
83	Co-Registration of Optically Sensed Images and Correlation (COSI-Corr): an operational methodology for ground deformation measurements. , 2007, , .		94
84	Millennial Recurrence of Large Earthquakes on the Haiyuan Fault near Songshan, Gansu Province, China. Bulletin of the Seismological Society of America, 2007, 97, 14-34.	2.3	94
85	Active thrusting offshore Mount Lebanon: Source of the tsunamigenic A.D. 551 Beirut-Tripoli earthquake. Geology, 2007, 35, 755.	4.4	108
86	Stress tensor and focal mechanisms along the Dead Sea fault and related structural elements based on seismological data. Tectonophysics, 2007, 429, 165-181.	2.2	63
87	Off-fault damage patterns due to supershear ruptures with application to the 2001Mw8.1 Kokoxili (Kunlun) Tibet earthquake. Journal of Geophysical Research, 2007, 112, .	3.3	82
88	Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7.8), northern Tibetan Plateau, China. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	69
89	Long-term slip rate of the southern San Andreas Fault from10Be-26Al surface exposure dating of an offset alluvial fan. Journal of Geophysical Research, 2006, 111, .	3.3	77
90	Serial ruptures of the San Andreas fault, Carrizo Plain, California, revealed by three-dimensional excavations. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	92

#	Article	IF	CITATIONS
91	Evidence for an earthquake barrier model from Mwâ^1⁄47.8 Kokoxili (Tibet) earthquake slip-distribution. Earth and Planetary Science Letters, 2006, 242, 354-364.	4.4	120
92	Slip-Partitioned Surface Breaks for the Mw 7.8 2001 Kokoxili Earthquake, China. Bulletin of the Seismological Society of America, 2005, 95, 731-738.	2.3	67
93	Sources of the large A.D. 1202 and 1759 Near East earthquakes. Geology, 2005, 33, 529.	4.4	69
94	Subsidence and Sinkhole Hazard Assessment in the Southern Dead Sea Area, Jordan. Pure and Applied Geophysics, 2005, 162, 221-248.	1.9	56
95	High-Resolution Satellite Imagery Mapping of the Surface Rupture and Slip Distribution of the Mw Â7.8, 14 November 2001 Kokoxili Earthquake, Kunlun Fault, Northern Tibet, China. Bulletin of the Seismological Society of America, 2005, 95, 1970-1987.	2.3	200
96	Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mwâ^1⁄47.9 Kokoxili earthquake. Earth and Planetary Science Letters, 2005, 237, 285-299.	4.4	128
97	Coseismic deformation of the 2001Mw= 7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry. Journal of Geophysical Research, 2005, 110, .	3.3	143
98	Six similar sequential ruptures of the San Andreas fault, Carrizo Plain, California. Geology, 2004, 32, 649.	4.4	50
99	Alluvial deposition and lake-level fluctuations forced by Late Quaternary climate change: the Dead Sea case example. Sedimentary Geology, 2003, 162, 119-139.	2.1	52
100	Paleoseismic Evidence of Characteristic Slip on the Western Segment of the North Anatolian Fault, Turkey. Bulletin of the Seismological Society of America, 2003, 93, 2317-2332.	2.3	64
101	Lateral Offsets on Surveyed Cultural Features Resulting from the 1999 Izmit and Duzce Earthquakes, Turkey. Bulletin of the Seismological Society of America, 2002, 92, 79-94.	2.3	148
102	The 14 November 2001, Mw = 7.8 Kokoxili Earthquake in Northern Tibet (Qinghai Province, China). Seismological Research Letters, 2002, 73, 125-135.	1.9	57
103	Slip rate on the Dead Sea transform fault in northern Araba valley (Jordan). Geophysical Journal International, 2000, 142, 755-768.	2.4	158
104	Seismic behaviour of the Dead Sea fault along Araba valley, Jordan. Geophysical Journal International, 2000, 142, 769-782.	2.4	120
105	Co-seismic deformation during the Mw7.3 Aqaba Earthquake (1995) from ERS-SAR interferometry. Geophysical Research Letters, 2000, 27, 3651-3654.	4.0	22
106	Active faulting in the Gulf of Aqaba: New knowledge from the <i>M</i> W 7.3 earthquake of 22 November 1995. Bulletin of the Seismological Society of America, 1999, 89, 1025-1036.	2.3	99
107	Inelastic surface deformation during the 2013 M _w 7.7 Balochistan, Pakistan, earthquake. Geology, 0, , G37290.1.	4.4	20
108	REFINED SATELLITE IMAGE ORIENTATION IN THE FREE OPEN-SOURCE PHOTOGRAMMETRIC TOOLS APERO/MICMAC. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, III-1, 83-90.	0.0	11

#	Article	IF	CITATIONS
109	REFINED SATELLITE IMAGE ORIENTATION IN THE FREE OPEN-SOURCE PHOTOGRAMMETRIC TOOLS APERO/MICMAC. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, III-1, 83-90.	0.0	16