
Ranko Gacesa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8195486/publications.pdf Version: 2024-02-01

RANKO GACESA

#	Article	IF	CITATIONS
1	Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut, 2021, 70, 1287-1298.	12.1	246
2	Environmental factors shaping the gut microbiome in a Dutch population. Nature, 2022, 604, 732-739.	27.8	239
3	The long-term genetic stability and individual specificity of the human gut microbiome. Cell, 2021, 184, 2302-2315.e12.	28.9	166
4	Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nature Genetics, 2022, 54, 143-151.	21.4	132
5	Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nature Communications, 2020, 11, 4018.	12.8	80
6	Riboflavin Supplementation in Patients with Crohn's Disease [the RISE-UP study]. Journal of Crohn's and Colitis, 2020, 14, 595-607.	1.3	63
7	Gene duplications are extensive and contribute significantly to the toxic proteome of nematocysts isolated from Acropora digitifera (Cnidaria: Anthozoa: Scleractinia). BMC Genomics, 2015, 16, 774.	2.8	58
8	The mycosporine-like amino acids porphyra-334 and shinorine are antioxidants and direct antagonists of Keap1-Nrf2 binding. Biochimie, 2018, 154, 35-44.	2.6	54
9	Rising levels of atmospheric oxygen and evolution of Nrf2. Scientific Reports, 2016, 6, 27740.	3.3	52
10	KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome. BMC Genomics, 2013, 14, 509.	2.8	51
11	Molecular photoprotection of human keratinocytes <i>in vitro</i> by the naturally occurring mycosporine-like amino acid palythine. British Journal of Dermatology, 2018, 178, 1353-1363.	1.5	50
12	Oâ€Methyltransferase Is Shared between the Pentose Phosphate and Shikimate Pathways and Is Essential for Mycosporineâ€Like Amino Acid Biosynthesis in <i>Anabaena variabilis</i> ATCC 29413. ChemBioChem, 2015, 16, 320-327.	2.6	48
13	Bacterial diversity of polluted surface sediments in the northern Adriatic Sea. Systematic and Applied Microbiology, 2015, 38, 189-197.	2.8	45
14	Gut microbial species and metabolic pathways associated with response to treatment with immune checkpoint inhibitors in metastatic melanoma. Melanoma Research, 2020, 30, 235-246.	1.2	42
15	Anti-inflammatory Gut Microbial Pathways Are Decreased During Crohn's Disease Exacerbations. Journal of Crohn's and Colitis, 2019, 13, 1439-1449.	1.3	39
16	Machine learning can differentiate venom toxins from other proteins having non-toxic physiological functions. PeerJ Computer Science, 0, 2, e90.	4.5	38
17	Draft Genome Sequence of Streptomyces rapamycinicus Strain NRRL 5491, the Producer of the Immunosuppressant Rapamycin. Genome Announcements, 2013, 1, .	0.8	37
18	Predicting substrate specificity of adenylation domains of nonribosomal peptide synthetases and other protein properties by latent semantic indexing. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 461-467.	3.0	37

RANKO GACESA

#	Article	IF	CITATIONS
19	Healthy Cotwins Share Gut Microbiome Signatures With Their Inflammatory Bowel Disease Twins and Unrelated Patients. Gastroenterology, 2021, 160, 1970-1985.	1.3	31
20	Whole exome sequencing analyses reveal gene–microbiota interactions in the context of IBD. Gut, 2021, 70, gutjnl-2019-319706.	12.1	26
21	Comparative proteomics reveals recruitment patterns of some protein families in the venoms of Cnidaria. Toxicon, 2017, 137, 19-26.	1.6	24
22	Databases of the thiotemplate modular systems (CSDB) and their in silico recombinants (r-CSDB). Journal of Industrial Microbiology and Biotechnology, 2013, 40, 653-659.	3.0	22
23	Multi-omics examination of Q fever fatigue syndrome identifies similarities with chronic fatigue syndrome. Journal of Translational Medicine, 2020, 18, 448.	4.4	21
24	The Gut Microbiome Composition Is Altered in Long-standing Type 1 Diabetes and Associates With Glycemic Control and Disease-Related Complications. Diabetes Care, 2022, 45, 2084-2094.	8.6	21
25	Bioinformatics analyses provide insight into distant homology of the Keap1–Nrf2 pathway. Free Radical Biology and Medicine, 2015, 88, 373-380.	2.9	18
26	"Beyond Primary Sequenceâ€â€"Proteomic Data Reveal Complex Toxins in Cnidarian Venoms. Integrative and Comparative Biology, 2019, 59, 777-785.	2.0	18
27	Evolutionary concepts in natural products discovery: what actinomycetes have taught us. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 211-217.	3.0	16
28	Bioprospecting for Genes Encoding Hydrocarbon-Degrading Enzymes from Metagenomic Samples Isolated from Northern Adriatic Sea Sediments. Food Technology and Biotechnology, 2018, 56, 270-277.	2.1	9
29	Genetic and biochemical evidence for redundant pathways leading to mycosporine-like amino acid biosynthesis in the cyanobacterium <italic>Sphaerospermopsis torques-reginae</italic> ITEP-024. Algae, 2020, 35, 177-187.	2.3	7
30	Mycosporine-like amino acid activation of the Keap1-Nrf2 pathway. Free Radical Biology and Medicine, 2017, 108, S21.	2.9	4
31	Donor tobacco smoking is associated with postoperative thrombosis after primary liver transplantation. Journal of Thrombosis and Haemostasis, 2020, 18, 2590-2600.	3.8	4
32	Donor genetic variants as risk factors for thrombosis after liver transplantation: A genome-wide association study. American Journal of Transplantation, 2021, 21, 3133-3147.	4.7	4
33	A combination of fecal calprotectin and human beta-defensin 2 facilitates diagnosis and monitoring of inflammatory bowel disease. Gut Microbes, 2021, 13, 1943288.	9.8	4
34	Long-Term Dietary Patterns Are Reflected in the Plasma Inflammatory Proteome of Patients with Inflammatory Bowel Disease. Nutrients, 2022, 14, 2522.	4.1	4
35	Genome Sequence of Streptomyces caatingaensis CMAA 1322, a New Abiotic Stress-Tolerant Actinomycete Isolated from Dried Lake Bed Sediment in the Brazilian Caatinga Biome. Genome Announcements, 2015, 3, .	0.8	2
36	Predicting Liver Disease Risk Using a Combination of Common Clinical Markers: A Screening Model from Routine Health Check-Up. Disease Markers, 2020, 2020, 1-11.	1.3	2

Ranko Gacesa

#	Article	lF	CITATIONS
37	The Long-Term Genetic Stability and Individual Specificity of the Human Gut Microbiome. SSRN Electronic Journal, 0, , .	0.4	2
38	MEGGASENSE - the Metagenome/Genome Annotated Sequence Natural Language Search Engine: a Platform for the Construction of Sequence Data Warehouses. Food Technology and Biotechnology, 2017, 55, 251-257.	2.1	1
39	Horizontal transfer of a natterin-like toxin encoding gene within the holobiont of the reef building coral (Cnidaria: Anthozoa: Scleractinia) and across multiple animal linages. Journal of Venom Research, 2020, 10, 7-12.	0.6	1
40	Bioprospecting for genes of alkane-degrading enzymes in metagenomic samples from northern Adriatic Sea. Journal of Biotechnology, 2014, 185, S6.	3.8	0
41	OP01 In-depth characterisation of host genetics and gut microbiome unravels novel host–microbiome interactions in inflammatory bowel disease. Journal of Crohn's and Colitis, 2019, 13, S001-S001.	1.3	0
42	Solid-Phase Synthesis and In-Silico Analysis of Iron-Binding Catecholato Chelators. International Journal of Molecular Sciences, 2020, 21, 7498.	4.1	0
43	P006 Host-genetics, dysbiosis, and clinical history explains fecal metabolic alterations in patients with Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2021, 15, S128-S128.	1.3	0