
Denis E Corpet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8195484/publications.pdf Version: 2024-02-01

DENIS E CORDET

#	Article	IF	CITATIONS
1	Carcinogenicity of consumption of red and processed meat. Lancet Oncology, The, 2015, 16, 1599-1600.	10.7	1,272
2	Processed Meat and Colorectal Cancer: A Review of Epidemiologic and Experimental Evidence. Nutrition and Cancer, 2008, 60, 131-144.	2.0	340
3	Heme Iron from Meat and Risk of Colorectal Cancer: A Meta-analysis and a Review of the Mechanisms Involved. Cancer Prevention Research, 2011, 4, 177-184.	1.5	311
4	How good are rodent models of carcinogenesis in predicting efficacy in humans? A systematic review and meta-analysis of colon chemoprevention in rats, mice and men. European Journal of Cancer, 2005, 41, 1911-1922.	2.8	203
5	Red meat and colon cancer: Should we become vegetarians, or can we make meat safer?. Meat Science, 2011, 89, 310-316.	5.5	203
6	Most Effective Colon Cancer Chemopreventive Agents in Rats: A Systematic Review of Aberrant Crypt Foci and Tumor Data, Ranked by Potency. Nutrition and Cancer, 2002, 43, 1-21.	2.0	191
7	A Central Role for Heme Iron in Colon Carcinogenesis Associated with Red Meat Intake. Cancer Research, 2015, 75, 870-879.	0.9	166
8	The role of red and processed meat in colorectal cancer development: a perspective. Meat Science, 2014, 97, 583-596.	5.5	145
9	Meat and cancer: haemoglobin and haemin in a low-calcium diet promote colorectal carcinogenesis at the aberrant crypt stage in rats. Carcinogenesis, 2003, 24, 1683-1690.	2.8	132
10	Insulin injections promote the growth of aberrant crypt foci in the colon of rats. Nutrition and Cancer, 1997, 27, 316-320.	2.0	125
11	Beef Meat and Blood Sausage Promote the Formation of Azoxymethane-Induced Mucin-Depleted Foci and Aberrant Crypt Foci in Rat Colons. Journal of Nutrition, 2004, 134, 2711-2716.	2.9	122
12	Meat Processing and Colon Carcinogenesis: Cooked, Nitrite-Treated, and Oxidized High-Heme Cured Meat Promotes Mucin-Depleted Foci in Rats. Cancer Prevention Research, 2010, 3, 852-864.	1.5	101
13	Point: From animal models to prevention of colon cancer. Systematic review of chemoprevention in min mice and choice of the model system. Cancer Epidemiology Biomarkers and Prevention, 2003, 12, 391-400.	2.5	94
14	Application of the key characteristics of carcinogens in cancer hazard identification. Carcinogenesis, 2018, 39, 614-622.	2.8	90
15	Diet, aberrant crypt foci and colorectal cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1993, 290, 111-118.	1.0	89
16	Calcium and α-tocopherol suppress cured-meat promotion of chemically induced colon carcinogenesis in rats and reduce associated biomarkers in human volunteers. American Journal of Clinical Nutrition, 2013, 98, 1255-1262.	4.7	85
17	Beef meat promotion of dimethylhydrazine-induced colorectal carcinogenesis biomarkers is suppressed by dietary calcium. British Journal of Nutrition, 2008, 99, 1000-1006.	2.3	80
18	The COX-2 inhibitor nimesulide suppresses superoxide and 8-hydroxy-deoxyguanosine formation, and stimulates apoptosis in mucosa during early colonic inflammation in rats. Carcinogenesis, 2000, 21, 973-976.	2.8	71

DENIS E CORPET

#	Article	IF	CITATIONS
19	New Marker of Colon Cancer Risk Associated with Heme Intake: 1,4-Dihydroxynonane Mercapturic Acid. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 2274-2279.	2.5	65
20	Colonic protein fermentation and promotion of colon carcinogenesis by thermolyzed casein. Nutrition and Cancer, 1995, 23, 271-281.	2.0	52
21	Freeze-Dried Ham Promotes Azoxymethane-Induced Mucin-Depleted Foci and Aberrant Crypt Foci in Rat Colon. Nutrition and Cancer, 2010, 62, 567-573.	2.0	51
22	Why does SARS-CoV-2 survive longer on plastic than on paper?. Medical Hypotheses, 2021, 146, 110429.	1.5	49
23	Antibiotic Suppression of Intestinal Microbiota Reduces Heme-Induced Lipoperoxidation Associated with Colon Carcinogenesis in Rats. Nutrition and Cancer, 2015, 67, 119-125.	2.0	41
24	Dextran sulfate enhances the level of an oxidative DNA damage biomarker, 8-oxo-7,8-dihydro-2′-deoxyguanosine, in rat colonic mucosa. Cancer Letters, 1998, 134, 1-5.	7.2	40
25	Effect of meat (beef, chicken, and bacon) on rat colon carcinogenesis. Nutrition and Cancer, 1998, 32, 165-173.	2.0	40
26	Cytostatic effect of polyethylene glycol on human colonic adenocarcinoma cells. International Journal of Cancer, 2001, 92, 63-69.	5.1	37
27	Red Wine and Pomegranate Extracts Suppress Cured Meat Promotion of Colonic Mucin-Depleted Foci in Carcinogen-Induced Rats. Nutrition and Cancer, 2017, 69, 289-298.	2.0	35
28	Antibiotic residues and drug resistance in human intestinal flora. Antimicrobial Agents and Chemotherapy, 1987, 31, 587-593.	3.2	34
29	An evaluation of methods to assess the effect of antimicrobial residues on the human gut flora. Veterinary Microbiology, 1993, 35, 199-212.	1.9	34
30	Polyethylene-glycol, a potent suppressor of azoxymethane-induced colonic aberrant crypt foci in rats. Carcinogenesis, 1999, 20, 915-918.	2.8	28
31	Endogenous N-Nitroso Compounds, and Their Precursors, Present in Bacon, Do Not Initiate or Promote Aberrant Crypt Foci in the Colon of Rats. Nutrition and Cancer, 2000, 38, 74-80.	2.0	28
32	Evaluation of Residual and Therapeutic Doses of Tetracycline in the Human-Flora-Associated (HFA) Mice Model. Regulatory Toxicology and Pharmacology, 2001, 34, 125-136.	2.7	27
33	Minimum antibiotic levels for selecting a resistance plasmid in a gnotobiotic animal model. Antimicrobial Agents and Chemotherapy, 1989, 33, 535-540.	3.2	26
34	Calcium inhibits promotion by hot dog of 1,2-dimethylhydrazine-induced mucin-depleted foci in rat colon. International Journal of Cancer, 2013, 133, n/a-n/a.	5.1	26
35	Interplay between chromatin-modifying enzymes controls colon cancer progression through Wnt signaling. Human Molecular Genetics, 2014, 23, 2120-2131.	2.9	26
36	Carrageenan Gel and Aberrant Crypt Foci in the Colon of Conventional and Human Flora-Associated Rats. Nutrition and Cancer, 2000, 37, 193-198.	2.0	25

DENIS E CORPET

#	Article	IF	CITATIONS
37	Impact of residual and therapeutic doses of ciprofloxacin in the human-flora-associated mice model. Regulatory Toxicology and Pharmacology, 2005, 42, 151-160.	2.7	24
38	Chemoprevention of aberrant crypt foci in the colon of rats by dietary onion. European Journal of Cancer, 2007, 43, 454-458.	2.8	24
39	Colon tumor promotion: is it a selection process? Effects of cholate, phytate, and food restriction in rats on proliferation and apoptosis in normal and aberrant crypts. Cancer Letters, 1997, 114, 135-138.	7.2	22
40	Heme-Induced Biomarkers Associated with Red Meat Promotion of colon Cancer Are Not Modulated by the Intake of Nitrite. Nutrition and Cancer, 2013, 65, 227-233.	2.0	21
41	Alterations of intestinal microflora by antibiotics. Digestive Diseases and Sciences, 1991, 36, 1729-1734.	2.3	19
42	Targeting Colon Luminal Lipid Peroxidation Limits Colon Carcinogenesis Associated with Red Meat Consumption. Cancer Prevention Research, 2018, 11, 569-580.	1.5	19
43	Glycemic index, nutrient density, and promotion of aberrant crypt foci in rat colon. Nutrition and Cancer, 1998, 32, 29-36.	2.0	18
44	Carrageenan given as a jelly, does not initiate, but promotes the growth of aberrant crypt foci in the rat colon. Cancer Letters, 1997, 114, 53-55.	7.2	17
45	Pluronic F68 block polymer, a very potent suppressor of carcinogenesis in the colon of rats and mice. British Journal of Cancer, 2001, 84, 90-93.	6.4	17
46	Calcium carbonate suppresses haem toxicity markers without calcium phosphate side effects on colon carcinogenesis. British Journal of Nutrition, 2011, 105, 384-392.	2.3	16
47	Aberrant Crypt Foci and Microadenoma As Markers for Colon Cancer. Environmental Health Perspectives, 1992, 98, 195.	6.0	14
48	Asbestos induces aberrant crypt foci in the colon of rats. Cancer Letters, 1993, 74, 183-187.	7.2	14
49	Comparative metabolism of chloramphenicol in germfree and conventional rats. Antimicrobial Agents and Chemotherapy, 1983, 24, 89-94.	3.2	12
50	Polyethylene glycol and prevalence of colorectal adenomas. Gastroenterologie Clinique Et Biologique, 2006, 30, 1196-1199.	0.9	12
51	Polyethylene glycol, unique among laxatives, suppresses aberrant crypt foci, by elimination of cells. Scandinavian Journal of Gastroenterology, 2006, 41, 730-736.	1.5	10
52	Induction of Colonic Aberrant Crypts in Mice by Feeding Apparent N-Nitroso Compounds Derived From Hot Dogs. Nutrition and Cancer, 2012, 64, 342-349.	2.0	10
53	Chlorothalonil Biotransformation by Gastrointestinal Microflora:In VitroComparative Approach in Rat, Dog, and Human. Pesticide Biochemistry and Physiology, 1997, 58, 34-48.	3.6	9
54	Urinary and Biliary Metabolic Patterns of Chlorothalonil in Germ-Free and Conventional Rats. Journal of Agricultural and Food Chemistry, 1999, 47, 2898-2903.	5.2	7

DENIS E CORPET

#	Article	IF	CITATIONS
55	Dehydroalanine and lysinoalanine in thermolyzed casein do not promote colon cancer in the rat. Food and Chemical Toxicology, 2008, 46, 3037-3042.	3.6	7
56	Carborundum, a bulk similar to dietary fibers but chemically inert, does not decrease colon carcinogenesis. Cancer Letters, 1997, 114, 35-38.	7.2	6
57	Re: â€~Application of the key characteristics of carcinogens in cancer hazard evaluation': response to Goodman, Lynch and Rhomberg. Carcinogenesis, 2018, 39, 1091-1093.	2.8	6
58	Lack of aberrant crypt promotion and of mutagenicity in extracts of cooked casein, a colon cancerâ€promoting food. Nutrition and Cancer, 1995, 24, 249-256.	2.0	4
59	Cooked casein promotes colon cancer in rats, may be because of mucosal abrasion. Cancer Letters, 1997, 114, 89-90.	7.2	4
60	Bioautographic Method for Evaluation of Glycopeptide Actaplanin in Milk. Journal of the Association of Official Analytical Chemists, 1986, 69, 938-940.	0.2	3
61	Rotavirus Inhibitor and Recovery in Raw Bovine Milk. Journal of Food Protection, 1995, 58, 434-438.	1.7	3
62	Epidemiological evidence for the association between red and processed meat intake and colorectal cancer. Meat Science, 2014, 98, 115.	5.5	3
63	[14C]Virginiamycin residues in eggs. Journal of Agricultural and Food Chemistry, 1988, 36, 837-840.	5.2	1
64	N -Nitroso Compounds from Dietary Bacon Do not Initiate or Promote Aberrant Crypt Foci in the Colon of F344 Rats. , 2000, , 147-150.		0
65	Model Systems of Human Intestinal Flora, to Set Acceptable Daily Intakes of Antimicrobial Residues. Microbial Ecology in Health and Disease, 2000, 12, 37-41.	3.5	0