
Mitsuru Okuwaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8195190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The interaction between nucleophosmin/NPM1 and the large ribosomal subunit precursors contribute to maintaining the nucleolar structure. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118879.	4.1	12
2	RNA-recognition motifs and glycine and arginine-rich region cooperatively regulate the nucleolar localization of nucleolin. Journal of Biochemistry, 2021, 169, 87-100.	1.7	11
3	Generation of Leukemiaâ€Associated Nucleoporin Fusion Genes Affects Nuclear Pore Complex Integrity. FASEB Journal, 2021, 35, .	0.5	0
4	G-patch domain-containing protein 4 localizes to both the nucleoli and Cajal bodies and regulates cell growth and nucleolar structure. Biochemical and Biophysical Research Communications, 2021, 559, 99-105.	2.1	6
5	SETâ€NUP214 and MLL cooperatively regulate the promoter activity of the <i>HoxA10</i> gene. Genes To Cells, 2021, 26, 830-837.	1.2	6
6	Formation of adenovirus DNA replication compartments and viral DNA accumulation sites by host chromatin regulatory proteins including NPM1. FEBS Journal, 2020, 287, 205-217.	4.7	21
7	Selective regulation of type II interferonâ€inducible genes by NPM1/nucleophosmin. FEBS Letters, 2018, 592, 244-255.	2.8	11
8	Assembly and remodeling of viral DNA and RNA replicons regulated by cellular molecular chaperones. Biophysical Reviews, 2018, 10, 445-452.	3.2	2
9	Function of Nup98 subtypes and their fusion proteins, Nup98-TopIIÎ ² and Nup98-SETBP1 in nuclear-cytoplasmic transport. Biochemical and Biophysical Research Communications, 2017, 487, 96-102.	2.1	5
10	Internal Associations of the Acidic Region of Upstream Binding Factor Control Its Nucleolar Localization. Molecular and Cellular Biology, 2017, 37, .	2.3	13
11	Pre-mRNA Processing Factor Prp18 Is a Stimulatory Factor of Influenza Virus RNA Synthesis and Possesses Nucleoprotein Chaperone Activity. Journal of Virology, 2017, 91, .	3.4	13
12	Efficient DNA binding of NF-κB requires the chaperone-like function of NPM1. Nucleic Acids Research, 2016, 45, gkw1285.	14.5	46
13	Functional characterization and efficient detection of Nucleophosmin/NPM1 oligomers. Biochemical and Biophysical Research Communications, 2016, 480, 702-708.	2.1	8
14	Leukemia-Associated Nup214 Fusion Proteins Disturb the XPO1-Mediated Nuclear-Cytoplasmic Transport Pathway and Thereby the NF-κB Signaling Pathway. Molecular and Cellular Biology, 2016, 36, 1820-1835.	2.3	37
15	Tracking adenovirus genomes identifies morphologically distinct late <scp>DNA</scp> replication compartments. Traffic, 2016, 17, 1168-1180.	2.7	18
16	Regulation of Cellular Dynamics and Chromosomal Binding Site Preference of Linker Histones H1.0 and H1.X. Molecular and Cellular Biology, 2016, 36, 2681-2696.	2.3	12
17	Câ€ŧerminal acidic domain of histone chaperone human <scp>NAP</scp> 1 is an efficient binding assistant for histone H2Aâ€H2B, but not H3â€H4. Genes To Cells, 2016, 21, 252-263.	1.2	21
18	pp32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA. ELife, 2015, 4, .	6.0	83

MITSURU OKUWAKI

#	Article	IF	CITATIONS
19	Wide range depth estimation from two blurred images with tilted lens optics. , 2014, , .		Ο
20	Depth estimation for automotive with tilted optics imaging. , 2014, , .		1
21	Reconstitution of human rRNA gene transcription in mouse cells by complete SL1 complex. Journal of Cell Science, 2014, 127, 3309-19.	2.0	11
22	Upstream binding factor-dependent and pre-rRNA transcription-independent association of pre-rRNA processing factors with rRNA gene. Biochemical and Biophysical Research Communications, 2014, 443, 22-27.	2.1	7
23	Intrinsically disordered regions of nucleophosmin/B23 regulate its RNA binding activity through their inter- and intra-molecular association. Nucleic Acids Research, 2014, 42, 1180-1195.	14.5	50
24	Identification of a Novel and Unique Transcription Factor in the Intraerythrocytic Stage of Plasmodium falciparum. PLoS ONE, 2013, 8, e74701.	2.5	13
25	Function of homo- and hetero-oligomers of human nucleoplasmin/nucleophosmin family proteins NPM1, NPM2 and NPM3 during sperm chromatin remodeling. Nucleic Acids Research, 2012, 40, 4861-4878.	14.5	67
26	B23/nucleophosmin is involved in regulation of adenovirus chromatin structure at late infection stages, but not in virus replication and transcription. Journal of General Virology, 2012, 93, 1328-1338.	2.9	22
27	Role of Template Activating Factor-I as a chaperone in linker histone dynamics. Journal of Cell Science, 2011, 124, 3254-3265.	2.0	39
28	Functional characterization of human nucleosome assembly protein 1â€like proteins as histone chaperones. Genes To Cells, 2010, 15, 13-27.	1.2	71
29	Regulation of Nucleolar Chromatin by B23/Nucleophosmin Jointly Depends upon Its RNA Binding Activity and Transcription Factor UBF. Molecular and Cellular Biology, 2010, 30, 4952-4964.	2.3	34
30	5′ sequence- and chromatin modification-dependent gene expression in Plasmodium falciparum erythrocytic stage. Molecular and Biochemical Parasitology, 2008, 162, 40-51.	1.1	11
31	Epigenetic Control of rDNA Loci in Response to Intracellular Energy Status. Cell, 2008, 133, 627-639.	28.9	360
32	Transcription Regulation of the rRNA Gene by a Multifunctional Nucleolar Protein, B23/Nucleophosmin, through Its Histone Chaperone Activity. Molecular and Cellular Biology, 2008, 28, 3114-3126.	2.3	142
33	Histone acetylation-independent transcription stimulation by a histone chaperone. Nucleic Acids Research, 2007, 35, 705-715.	14.5	25
34	Physical and functional interaction between a nucleolar protein nucleophosmin/B23 and adenovirus basic core proteins. FEBS Letters, 2007, 581, 3283-3288.	2.8	41
35	The Structure and Functions of NPM1/Nucleophsmin/B23, a Multifunctional Nucleolar Acidic Protein. Journal of Biochemistry, 2007, 143, 441-448.	1.7	181
36	Involvement of Template-Activating Factor I/SET in Transcription of Adenovirus Early Genes as a Positive-Acting Factor. Journal of Virology, 2006, 80, 794-801.	3.4	72

MITSURU OKUWAKI

#	Article	IF	CITATIONS
37	Assembly and Disassembly of Nucleosome Core Particles Containing Histone Variants by Human Nucleosome Assembly Protein I. Molecular and Cellular Biology, 2005, 25, 10639-10651.	2.3	80
38	Maintenance DNA Methylation of Nucleosome Core Particles. Journal of Biological Chemistry, 2004, 279, 2904-2912.	3.4	42
39	Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO Journal, 2004, 23, 489-499.	7.8	247
40	Ternary complex formation between DNA-adenovirus core protein VII and TAF-Iβ/SET, an acidic molecular chaperone. FEBS Letters, 2003, 555, 521-527.	2.8	57
41	Herpes simplex virus type 1 tegument protein VP22 interacts with TAF-I proteins and inhibits nucleosome assembly but not regulation of histone acetylation by INHAT. Journal of General Virology, 2003, 84, 2501-2510.	2.9	52
42	The RNA Binding Activity of a Ribosome Biogenesis Factor, Nucleophosmin/B23, Is Modulated by Phosphorylation with a Cell Cycle-dependent Kinase and by Association with Its Subtype. Molecular Biology of the Cell, 2002, 13, 2016-2030.	2.1	158
43	Identification of nucleophosmin/B23, an acidic nucleolar protein, as a stimulatory factor for in vitro replication of adenovirus DNA complexed with viral basic core proteins. Journal of Molecular Biology, 2001, 311, 41-55.	4.2	127
44	Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Letters, 2001, 506, 272-276.	2.8	230
45	Histone- and chromatin-binding activity of template activating factor-I. FEBS Letters, 1999, 463, 285-288.	2.8	27
46	Coiled-coil structure-mediated dimerization of template activating factor-l is critical for its chromatin remodeling activity. Journal of Molecular Biology, 1999, 290, 547-557.	4.2	54
47	Normal pulse voltammetry for facilitated ion transfer processes across two immiscible liquid–liquid interfaces. Electrochimica Acta, 1998, 44, 117-124.	5.2	8
48	Cellular Localization and Expression of Template-Activating Factor I in Different Cell Types. Experimental Cell Research, 1998, 240, 274-281.	2.6	109
49	Template Activating Factor-I Remodels the Chromatin Structure and Stimulates Transcription from the Chromatin Template. Journal of Biological Chemistry, 1998, 273, 34511-34518.	3.4	116
50	NAPâ€I is a functional homologue of TAFâ€I that is required for replication and transcription of the adenovirus genome in a chromatinâ€Iike structure. Genes To Cells, 1996, 1, 1045-1056.	1.2	96
51	Stimulation of DNA Transcription by the Replication Factor from the Adenovirus Genome in a Chromatin-like Structure. Journal of Biological Chemistry, 1995, 270, 9645-9650.	3.4	59