List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8194725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibiting the Leidenfrost effect above 1,000 °C for sustained thermal cooling. Nature, 2022, 601, 568-572.	13.7	120
2	Leidenfrost flows: instabilities and symmetry breakings. Flow, 2022, 2, .	1.0	4
3	Thermophobic Leidenfrost. Soft Matter, 2021, 17, 8805-8809.	1.2	9
4	Droplet hurdles race. Applied Physics Letters, 2021, 118, .	1.5	3
5	Unique and universal dew-repellency of nanocones. Nature Communications, 2021, 12, 3458.	5.8	33
6	Self-excitation of Leidenfrost drops and consequences on their stability. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
7	Suck-Back Impact on Fluid Behavior at Filling Needle Tip. Journal of Pharmaceutical Sciences, 2020, 109, 1123-1129.	1.6	3
8	Friction properties of superhydrophobic ridges. Journal of Fluid Mechanics, 2020, 890, .	1.4	10
9	Tip-induced flipping of droplets on Janus pillars: From local reconfiguration to global transport. Science Advances, 2020, 6, eabb4540.	4.7	164
10	Viscous bouncing. Soft Matter, 2020, 16, 7270-7273.	1.2	21
11	Universality of friction laws on liquid-infused materials. Physical Review Fluids, 2020, 5, .	1.0	38
12	Droplets impaling on a cone. Physical Review Fluids, 2020, 5, .	1.0	7
13	Self-propelling droplets on fibres subject to a crosswind. Nature Physics, 2019, 15, 1027-1032.	6.5	17
14	The cold Leidenfrost regime. Science Advances, 2019, 5, eaaw0304.	4.7	52
15	The dual role of viscosity in capillary rise. Soft Matter, 2019, 15, 2757-2761.	1.2	16
16	Tightrope bubbles. Applied Physics Letters, 2019, 114, .	1.5	4
17	Two recipes for repelling hot water. Nature Communications, 2019, 10, 1410.	5.8	37
18	Superhydrophobic frictions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8220-8223.	3.3	40

#	Article	IF	CITATIONS
19	Path instabilities of streamlined bodies. Journal of Fluid Mechanics, 2019, 864, 286-302.	1.4	3
20	Ballistics of self-jumping microdroplets. Physical Review Fluids, 2019, 4, .	1.0	22
21	Water ring-bouncing on repellent singularities. Soft Matter, 2018, 14, 2227-2233.	1.2	79
22	Drop trampoline. Europhysics Letters, 2018, 124, 24003.	0.7	22
23	Leidenfrost wheels. Nature Physics, 2018, 14, 1188-1192.	6.5	144
24	Capillary descent. Soft Matter, 2018, 14, 5364-5368.	1.2	6
25	Droplet fragmentation using a mesh. Physical Review Fluids, 2018, 3, .	1.0	55
26	Symmetry breaking in Leidenfrost flows. Physical Review Fluids, 2018, 3, .	1.0	6
27	Air-propelled, herringbone-textured platelets. Physical Review Fluids, 2018, 3, .	1.0	2
28	On the shape of giant soap bubbles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2515-2519.	3.3	27
29	Monostable superrepellent materials. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3387-3392.	3.3	93
30	Antifogging abilities of model nanotextures. Nature Materials, 2017, 16, 658-663.	13.3	288
31	Air-levitated platelets: from take off to motion. Journal of Fluid Mechanics, 2017, 814, 535-546.	1.4	7
32	Drop friction on liquid-infused materials. Soft Matter, 2017, 13, 6981-6987.	1.2	110
33	Soft, elastic, water-repellent materials. Applied Physics Letters, 2017, 110, .	1.5	17
34	How merging droplets jump off a superhydrophobic surface: Measurements and model. Physical Review Fluids, 2017, 2, .	1.0	52
35	Spreading of Bubbles after Contacting the Lower Side of an Aerophilic Slide Immersed in Water. Physical Review Letters, 2016, 117, 094501.	2.9	33
36	Successive instabilities of confined Leidenfrost puddles. Europhysics Letters, 2015, 112, 26002.	0.7	5

#	Article	IF	CITATIONS
37	Liquid filmification from menisci. Europhysics Letters, 2015, 112, 16002.	0.7	4
38	From coffee rings to coffee eyes. Soft Matter, 2015, 11, 4669-4673.	1.2	110
39	Self-removal of condensed water on the legs of water striders. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9247-9252.	3.3	194
40	Capillary muscle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6301-6306.	3.3	35
41	Water impacting on superhydrophobic macrotextures. Nature Communications, 2015, 6, 8001.	5.8	331
42	Strongly Metastable Assemblies of Particles at Liquid Interfaces. Langmuir, 2014, 30, 14712-14716.	1.6	8
43	Explosions at the water surface. Journal of Fluid Mechanics, 2014, 752, 123-139.	1.4	13
44	The force of impacting rain. Soft Matter, 2014, 10, 4929-4934.	1.2	100
45	Shooting in a foam. Soft Matter, 2014, 10, 6696-6704.	1.2	4
46	Propulsion on a superhydrophobic ratchet. Scientific Reports, 2014, 4, 5280.	1.6	51
47	Particles accelerate the detachment of viscous liquids. Rheologica Acta, 2013, 52, 403-412.	1.1	35
48	Self-propelling uneven Leidenfrost solids. Physics of Fluids, 2013, 25, .	1.6	46
49	Flexible scraping of viscous fluids. Journal of Fluid Mechanics, 2013, 715, 424-435.	1.4	13
50	Inertial collapse of liquid rings. Journal of Fluid Mechanics, 2013, 717, .	1.4	20
51	Propulsion mechanisms for Leidenfrost solids on ratchets. Physical Review E, 2013, 87, 021001.	0.8	44
52	Leidenfrost Dynamics. Annual Review of Fluid Mechanics, 2013, 45, 197-215.	10.8	422
53	La caléfaction. , 2013, , 12-16.	0.1	1
54	Magnetic control of Leidenfrost drops. Physical Review E, 2012, 85, 056311.	0.8	26

#	Article	IF	CITATIONS
55	Shuttlecock dynamics. Procedia Engineering, 2012, 34, 176-181.	1.2	15
56	Leidenfrost becomes a fakir. Nature Materials, 2012, 11, 915-916.	13.3	12
57	Water colliding with oil. Journal of Fluid Mechanics, 2012, 702, 1-4.	1.4	4
58	Capillary Extraction. Langmuir, 2011, 27, 9396-9402.	1.6	18
59	Detergency in a tube. Soft Matter, 2011, 7, 7498.	1.2	16
60	Coating of a textured solid. Journal of Fluid Mechanics, 2011, 669, 55-63.	1.4	84
61	Leidenfrost on a ratchet. Nature Physics, 2011, 7, 395-398.	6.5	301
62	Trapping Leidenfrost Drops with Crenelations. Physical Review Letters, 2011, 107, 114503.	2.9	54
63	Football curves. Journal of Fluids and Structures, 2011, 27, 659-667.	1.5	6
64	A universal law for capillary rise in corners. Journal of Fluid Mechanics, 2011, 666, 146-154.	1.4	161
65	Wave drag on floating bodies. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15064-15068.	3.3	25
66	Bioinspired Ribbed Nanoneedles with Robust Superhydrophobicity. Advanced Functional Materials, 2010, 20, 656-662.	7.8	182
67	On a tweezer for droplets. Advances in Colloid and Interface Science, 2010, 161, 10-14.	7.0	32
68	Dynamical superhydrophobicity. Faraday Discussions, 2010, 146, 19.	1.6	142
69	Drops impacting inclined fibers. Journal of Colloid and Interface Science, 2009, 334, 70-74.	5.0	40
70	Contact Angle Hysteresis Generated by Strong Dilute Defects. Journal of Physical Chemistry B, 2009, 113, 3906-3909.	1.2	171
71	Delayed Freezing on Water Repellent Materials. Langmuir, 2009, 25, 7214-7216.	1.6	413
72	Surface Tension Transport of Prey by Feeding Shorebirds: The Capillary Ratchet. Science, 2008, 320, 931-934.	6.0	399

#	Article	IF	CITATIONS
73	Non-adhesive lotus and other hydrophobic materials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 1539-1556.	1.6	144
74	Bouncing Bubbles. Journal of Adhesion, 2007, 83, 897-906.	1.8	13
75	On the Landauâ [^] Levich Transition. Langmuir, 2007, 23, 10116-10122.	1.6	35
76	The effects of gravity on the capillary instability in tubes. Journal of Fluid Mechanics, 2006, 556, 217.	1.4	33
77	On the elasticity of an inertial liquid shock. Journal of Fluid Mechanics, 2006, 554, 47.	1.4	228
78	Vita brevis of antibubbles. Europhysics News, 2006, 37, 24-25.	0.1	8
79	Surfing the hot spot. Nature Materials, 2006, 5, 429-430.	13.3	52
80	Impact on Everest. Nature, 2005, 435, 1168-1169.	13.7	26
81	Non-sticking drops. Reports on Progress in Physics, 2005, 68, 2495-2532.	8.1	1,114
82	On water repellency. Soft Matter, 2005, 1, 55.	1.2	708
83	Air Entrainment by a Viscous Jet Plunging into a Bath. Physical Review Letters, 2004, 93, 254501.	2.9	49
84	Model droplets. Nature Materials, 2004, 3, 79-80.	13.3	53
85	Self-similar etching. Journal of Colloid and Interface Science, 2004, 270, 247-249.	5.0	3
86	Capturing drops with a thin fiber. Journal of Colloid and Interface Science, 2004, 279, 192-197.	5.0	128
87	Maximal deformation of an impacting drop. Journal of Fluid Mechanics, 2004, 517, 199-208.	1.4	867
88	Drops on a conical wire. Journal of Fluid Mechanics, 2004, 510, 29-45.	1.4	400
89	Leidenfrost drops. Physics of Fluids, 2003, 15, 1632.	1.6	454
90	Drops impacting a sieve. Journal of Colloid and Interface Science, 2003, 263, 244-249.	5.0	57

#	Article	IF	CITATIONS
91	Superhydrophobic states. Nature Materials, 2003, 2, 457-460.	13.3	2,913
92	A laboratory model of splashâ€form tektites. Meteoritics and Planetary Science, 2003, 38, 1331-1340.	0.7	41
93	Fracture of a Viscous Liquid. Physical Review Letters, 2003, 90, 184501.	2.9	51
94	Self-propelling slugs. Journal of Fluid Mechanics, 2002, 467, 101-127.	1.4	126
95	Onset of menisci. Journal of Fluid Mechanics, 2002, 460, 131-149.	1.4	90
96	Rise of Liquids and Bubbles in Angular Capillary Tubes. Journal of Colloid and Interface Science, 2002, 247, 162-166.	5.0	97
97	Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 41-46.	2.3	1,167
98	Contact time of a bouncing drop. Nature, 2002, 417, 811-811.	13.7	959
99	Fakir droplets. Nature Materials, 2002, 1, 14-15.	13.3	247
100	Rough ideas on wetting. Physica A: Statistical Mechanics and Its Applications, 2002, 313, 32-46.	1.2	470
101	Falling Slugs. Journal of Colloid and Interface Science, 2001, 243, 262-264.	5.0	63
102	Liquid marbles. Nature, 2001, 411, 924-927.	13.7	971
103	Rebounds in a Capillary Tube. Langmuir, 1999, 15, 3679-3682.	1.6	85
104	FLUID COATING ON A FIBER. Annual Review of Fluid Mechanics, 1999, 31, 347-384.	10.8	435
105	Gravity and Inertia Effects in Plate Coating. Journal of Colloid and Interface Science, 1998, 203, 278-285.	5.0	36
106	Drops at Rest on a Tilted Plane. Langmuir, 1998, 14, 2213-2216.	1.6	165
107	Fluid Coating from a Polymer Solution. Langmuir, 1998, 14, 1911-1914.	1.6	55
108	Thickening Factor in Marangoni Coating. Langmuir, 1997, 13, 2911-2916.	1.6	62

#	Article	lF	CITATIONS
109	Inertial coating of a fibre. Journal of Fluid Mechanics, 1996, 311, 219.	1.4	60
110	Imbibition of a Fabric. Journal of Colloid and Interface Science, 1995, 173, 319-327.	5.0	94
111	The meniscus on a fibre. Advances in Colloid and Interface Science, 1994, 48, 141-150.	7.0	41
112	Formation of soap films from polymer solutions. Langmuir, 1992, 8, 3161-3167.	1.6	21
113	Spreading of nonvolatile liquids in a continuum picture. Langmuir, 1991, 7, 335-338.	1.6	325
114	Wetting of fibers : theory and experiments. Revue De Physique Appliquée, 1988, 23, 1023-1030.	0.4	36