Ikue Mori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8194440/publications.pdf

Version: 2024-02-01

		159585	197818
55	4,317	30	49
papers	citations	h-index	g-index
63	63	63	2613
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Neural regulation of thermotaxis in Caenorhabditis elegans. Nature, 1995, 376, 344-348.	27.8	534
2	Mutations in a Cyclic Nucleotide–Gated Channel Lead to Abnormal Thermosensation and Chemosensation in C. elegans. Neuron, 1996, 17, 707-718.	8.1	398
3	Regulation of Interneuron Function in the C. elegans Thermoregulatory Pathway by the ttx-3 LIM Homeobox Gene. Neuron, 1997, 19, 345-357.	8.1	250
4	Ca2+ Signaling via the Neuronal Calcium Sensor-1 Regulates Associative Learning and Memory in C. elegans. Neuron, 2001, 30, 241-248.	8.1	205
5	The C. elegans Thermosensory Neuron AFD Responds to Warming. Current Biology, 2004, 14, 1291-1295.	3.9	192
6	Temperature Sensing by an Olfactory Neuron in a Circuit Controlling Behavior of <i>C. elegans</i> Science, 2008, 320, 803-807.	12.6	180
7	C. elegans phototransduction requires a G protein–dependent cGMP pathway and a taste receptor homolog. Nature Neuroscience, 2010, 13, 715-722.	14.8	171
8	HEN-1, a Secretory Protein with an LDL Receptor Motif, Regulates Sensory Integration and Learning in Caenorhabditis elegans. Cell, 2002, 109, 639-649.	28.9	157
9	Genetics of Chemotaxis and Thermotaxis in the NematodeCaenorhabditis Elegans. Annual Review of Genetics, 1999, 33, 399-422.	7.6	154
10	Identification of Guanylyl Cyclases That Function in Thermosensory Neurons of Caenorhabditis elegans. Genetics, 2006, 172, 2239-2252.	2.9	153
11	Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx. Neuron, 2001, 31, 943-956.	8.1	148
12	Negative Regulation and Gain Control of Sensory Neurons by the C. elegans Calcineurin TAX-6. Neuron, 2002, 33, 751-763.	8.1	130
13	Genetic Control of Temperature Preference in the Nematode Caenorhabditis elegans. Genetics, 2005, 169, 1437-1450.	2.9	130
14	Insulin-like signaling and the neural circuit for integrative behavior in C. elegans. Genes and Development, 2006, 20, 2955-2960.	5. 9	123
15	Functional reconstitution of a heteromeric cyclic nucleotide-gated channel of Caenorhabditis elegans in cultured cells. Brain Research, 1999, 821, 160-168.	2.2	102
16	Behavioral plasticity, learning, and memory in C. elegans. Current Opinion in Neurobiology, 2013, 23, 92-99.	4.2	94
17	Diverse regulation of sensory signaling by C. elegans nPKC-epsilon/eta TTX-4. EMBO Journal, 2005, 24, 2127-2137.	7.8	92
18	Bidirectional regulation of thermotaxis by glutamate transmissions in <i>Caenorhabditis elegans</i> EMBO Journal, 2011, 30, 1376-1388.	7.8	86

#	Article	IF	Citations
19	dnc-1/dynactin 1 Knockdown Disrupts Transport of Autophagosomes and Induces Motor Neuron Degeneration. PLoS ONE, 2013, 8, e54511.	2.5	85
20	Worm thermotaxis: a model system for analyzing thermosensation and neural plasticity. Current Opinion in Neurobiology, 2007, 17, 712-719.	4.2	70
21	Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans. Nature Neuroscience, 2011, 14, 984-992.	14.8	70
22	Quantitative analysis of thermotaxis in the nematode Caenorhabditis elegans. Journal of Neuroscience Methods, 2006, 154, 45-52.	2.5	67
23	Neural coding in a single sensory neuron controlling opposite seeking behaviours in Caenorhabditis elegans. Nature Communications, 2011, 2, 355.	12.8	66
24	Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior. Cell Reports, 2016, 14, 11-21.	6.4	63
25	Inositol monophosphatase regulates localization of synaptic components and behavior in the mature nervous system of C. elegans. Genes and Development, 2006, 20, 3296-3310.	5.9	61
26	Thermotaxis of C. elegans as a model for temperature perception, neural information processing and neural plasticity. Worm, 2012, 1, 31-41.	1.0	56
27	Identification of the AFD neuron as the site of action of the CREB protein in <i>Caenorhabditis elegans</i> thermotaxis. EMBO Reports, 2011, 12, 855-862.	4.5	52
28	Molecular Physiology of the Neural Circuit for Calcineurin-Dependent Associative Learning in Caenorhabditis elegans. Journal of Neuroscience, 2006, 26, 9355-9364.	3.6	47
29	Molecular neurogenetics of chemotaxis and thermotaxis in the nematodeCaenorhabditis elegans. BioEssays, 1997, 19, 1055-1064.	2.5	46
30	Molecular biology of thermosensory transduction in C. elegans. Current Opinion in Neurobiology, 2015, 34, 117-124.	4.2	42
31	Reconstruction of Spatial Thermal Gradient Encoded in Thermosensory Neuron AFD in <i>Caenorhabditis elegans</i>	3.6	35
32	Context-dependent operation of neural circuits underlies a navigation behavior in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6178-6188.	7.1	32
33	Lifespan extension by peroxidase/dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in <i>C. elegans</i>	2.0	30
34	A behavior-based drug screening system using a Caenorhabditis elegans model of motor neuron disease. Scientific Reports, 2019, 9, 10104.	3.3	25
35	Presynaptic MAST kinase controls opposing postsynaptic responses to convey stimulus valence in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1638-1647.	7.1	23
36	Identification of animal behavioral strategies by inverse reinforcement learning. PLoS Computational Biology, 2018, 14, e1006122.	3.2	21

#	Article	IF	CITATIONS
37	Ageâ€dependent changes in response property and morphology of a thermosensory neuron and thermotaxis behavior in <i>Caenorhabditis elegans</i>). Aging Cell, 2020, 19, e13146.	6.7	17
38	Novel and Conserved Protein Macoilin Is Required for Diverse Neuronal Functions in Caenorhabditis elegans. PLoS Genetics, 2011, 7, e1001384.	3.5	15
39	SLO potassium channels antagonize premature decision making in C. elegans. Communications Biology, 2018, 1, 123.	4.4	13
40	A novel and conserved protein AHOâ€3 is required for thermotactic plasticity associated with feeding states in <i>Caenorhabditis elegans</i>). Genes To Cells, 2012, 17, 365-386.	1.2	12
41	Neural Coding of Thermal Preferences in the Nematode Caenorhabditis elegans. ENeuro, 2020, 7, ENEURO.0414-19.2020.	1.9	12
42	KINâ€4/MAST kinase promotes PTENâ€mediated longevity of <i>Caenorhabditis elegans</i> via binding through a PDZ domain. Aging Cell, 2019, 18, e12906.	6.7	10
43	Human <i>myo</i> â€inositol monophosphatase 2 rescues the nematode thermotaxis mutant <i>ttxâ€7</i> more efficiently than <scp>IMPA</scp> 1: functional and evolutionary considerations of the two mammalian <i>myo</i> â€inositol monophosphatase genes. Journal of Neurochemistry, 2013, 124, 685-694.	3.9	8
44	Aging: Shall We Take the High Road?. Current Biology, 2009, 19, R363-R364.	3.9	6
45	Axiallyâ€confined <i>inÂvivo</i> singleâ€cell labeling by primed conversion using blue and red lasers with conventional confocal microscopes. Development Growth and Differentiation, 2017, 59, 741-748.	1.5	6
46	TheCaenorhabditis elegansINXâ€4/Innexin is required for the fineâ€ŧuning of temperature orientation in thermotaxis behavior. Genes To Cells, 2020, 25, 154-164.	1.2	6
47	Molecular Mechanisms of Learning in Caenorhabditis elegans. , 2017, , 415-434.		6
48	A Single Sensory Neuron Directs Both Attractive and Repulsive Odor Preferences. Neuron, 2008, 59, 839-840.	8.1	2
49	Thermosensory Learning in Caenorhabditis elegans. Handbook of Behavioral Neuroscience, 2013, , 124-139.	0.7	2
50	Japanese studies on neural circuits and behavior of Caenorhabditis elegans. Frontiers in Neural Circuits, 2013, 7, 187.	2.8	2
51	OLA-1, an Obg-like ATPase, integrates hunger with temperature information in sensory neurons in C. elegans. PLoS Genetics, 2022, 18, e1010219.	3.5	1
52	2P268 High-throughput analysis elucidates the complex pattern of sensory-motor integration in thermotaxis behavior of C. elegans (The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S130.	0.1	0
53	Thermosensory Neuronal Encoding of Spatial Temperature Gradient in <i>C. elegans</i> Thermotaxis. Seibutsu Butsuri, 2018, 58, 031-033.	0.1	0
54	Optogenetics in Caenorhabditis elegans. Advances in Experimental Medicine and Biology, 2021, 1293, 321-334.	1.6	0

ARTICLE IF CITATIONS

55 Behavioral Analysis in Caenorhabditis elegans., 2013,, 3-13. 0