Vinod Subramaniam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/819442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dependence of α-Synuclein Aggregate Morphology on Solution Conditions. Journal of Molecular Biology, 2002, 322, 383-393.	2.0	487
2	Neurotoxicity of Alzheimer's disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO Journal, 2010, 29, 3408-3420.	3.5	455
3	Impact of the Acidic C-Terminal Region Comprising Amino Acids 109â^'140 on α-Synuclein Aggregation in Vitroâ€. Biochemistry, 2004, 43, 16233-16242.	1.2	317
4	Photochromicity and Fluorescence Lifetimes of Green Fluorescent Protein. Journal of Physical Chemistry B, 1999, 103, 8612-8617.	1.2	308
5	Fast, Ultrasensitive Virus Detection Using a Young Interferometer Sensor. Nano Letters, 2007, 7, 394-397.	4.5	260
6	NMR of α-synuclein–polyamine complexes elucidates the mechanism and kinetics of induced aggregation. EMBO Journal, 2004, 23, 2039-2046.	3.5	231
7	What's in a name? Why these proteins are intrinsically disordered. Intrinsically Disordered Proteins, 2013, 1, e24157.	1.9	226
8	Dynamic Fluorescence Anisotropy Imaging Microscopy inthe Frequency Domain (rFLIM). Biophysical Journal, 2002, 83, 1631-1649.	0.2	201
9	One- and Two-Photon Excited Fluorescence Lifetimes and Anisotropy Decays of Green Fluorescent Proteins. Biophysical Journal, 2000, 78, 1589-1598.	0.2	181
10	Identification of Single Molecules in Aqueous Solution by Time-Resolved Fluorescence Anisotropy. Journal of Physical Chemistry A, 1999, 103, 331-336.	1.1	170
11	Rapid Self-assembly of α-Synuclein Observed by In Situ Atomic Force Microscopy. Journal of Molecular Biology, 2004, 340, 127-139.	2.0	165
12	Cellular Polyamines Promote the Aggregation of α-Synuclein. Journal of Biological Chemistry, 2003, 278, 3235-3240.	1.6	161
13	Nanomechanical properties of α-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM. Nanoscale Research Letters, 2011, 6, 270.	3.1	157
14	EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. FEBS Letters, 2000, 479, 131-135.	1.3	156
15	Lipid bilayer disruption by oligomeric α-synuclein depends on bilayer charge and accessibility of the hydrophobic core. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1271-1278.	1.4	149
16	Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology. Journal of Microscopy, 2005, 217, 109-116.	0.8	142
17	SNARE assembly and disassembly exhibit a pronounced hysteresis. Nature Structural Biology, 2002, 9, 144-151.	9.7	141
18	Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency. Physical Review Letters, 2012, 109, 203601.	2.9	141

#	Article	IF	CITATIONS
19	The use of fluorescent dyes and probes in surgical oncology. European Journal of Surgical Oncology, 2010, 36, 6-15.	0.5	127
20	Refractive Index Sensing of Green Fluorescent Proteins in Living Cells Using Fluorescence Lifetime Imaging Microscopy. Biophysical Journal, 2008, 94, L67-L69.	0.2	124
21	Micromechanical bending of single collagen fibrils using atomic force microscopy. Journal of Biomedical Materials Research - Part A, 2007, 82A, 160-168.	2.1	123
22	Three photoconvertible forms of green fluorescent protein identified by spectral hole-burning. Nature Structural Biology, 1999, 6, 706-706.	9.7	121
23	Covalent Microcontact Printing of Proteins for Cell Patterning. Chemistry - A European Journal, 2006, 12, 6290-6297.	1.7	118
24	Membrane Permeabilization by Oligomeric α-Synuclein: In Search of the Mechanism. PLoS ONE, 2010, 5, e14292.	1.1	118
25	Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nature Communications, 2013, 4, 1412.	5.8	117
26	Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression. Cytometry, 2001, 43, 248-260.	1.8	112
27	Evidence for Intramolecular Antiparallel Beta-Sheet Structure in Alpha-Synuclein Fibrils from a Combination of Two-Dimensional Infrared Spectroscopy and Atomic Force Microscopy. Scientific Reports, 2017, 7, 41051.	1.6	111
28	Generation of Alternative Ultrabithorax Isoforms and Stepwise Removal of a Large Intron by Resplicing at Exon–Exon Junctions. Molecular Cell, 1998, 2, 787-796.	4.5	109
29	Antiparallel Arrangement of the Helices of Vesicle-Bound α-Synuclein. Journal of the American Chemical Society, 2008, 130, 7796-7797.	6.6	106
30	Three photoconvertible forms of green fluorescent protein identified by spectral hole-burning. Nature Structural Biology, 1999, 6, 557-560.	9.7	105
31	Inhibition of αâ€synuclein aggregation by small heat shock proteins. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2956-2967.	1.5	104
32	Strategies for Patterning Biomolecules with Dipâ€Pen Nanolithography. Small, 2011, 7, 989-1002.	5.2	101
33	Photophysics and optical switching in green fluorescent protein mutants. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2974-2978.	3.3	100
34	The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14392-14397.	3.3	100
35	Tryptophan Fluorescence Reveals Structural Features of α-Synuclein Oligomers. Journal of Molecular Biology, 2009, 394, 826-833.	2.0	99
36	Quantitative Morphological Analysis Reveals Ultrastructural Diversity of Amyloid Fibrils from α-Synuclein Mutants. Biophysical Journal, 2006, 91, L96-L98.	0.2	97

#	Article	IF	CITATIONS
37	Time, Space, and Spectrally Resolved Studies on J-Aggregate Interactions in Zeolite L Nanochannels. Journal of the American Chemical Society, 2008, 130, 10970-10976.	6.6	94
38	Evaluation of Fluorophores to Label SNAP-Tag Fused Proteins for Multicolor Single-Molecule Tracking Microscopy in Live Cells. Biophysical Journal, 2014, 107, 803-814.	0.2	92
39	Sensitive Electrochemical Detection of Native and Aggregatedα-Synuclein Protein Involved in Parkinson's Disease. Electroanalysis, 2004, 16, 1172-1181.	1.5	88
40	α-Synuclein Oligomers: an Amyloid Pore?. Molecular Neurobiology, 2013, 47, 613-621.	1.9	87
41	Ultrafast dynamics in the excited state of green fluorescent protein (wt) studied by frequency-resolved femtosecond pump-probe spectroscopy. Physical Chemistry Chemical Physics, 2002, 4, 1072-1081.	1.3	83
42	The Impact of N-terminal Acetylation of α-Synuclein on Phospholipid Membrane Binding and Fibril Structure. Journal of Biological Chemistry, 2016, 291, 21110-21122.	1.6	81
43	Direct Observation of Nanomechanical Properties of Chromatin in Living Cells. Nano Letters, 2007, 7, 1424-1427.	4.5	78
44	Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy. Biophysical Journal, 2009, 97, 835-843.	0.2	78
45	Silver Nanoparticle Aggregates as Highly Efficient Plasmonic Antennas for Fluorescence Enhancement. Journal of Physical Chemistry C, 2012, 116, 16687-16693.	1.5	77
46	C-Terminal Truncated α-Synuclein Fibrils Contain Strongly Twisted β-Sheets. Journal of the American Chemical Society, 2017, 139, 15392-15400.	6.6	77
47	Molecular Composition of Subâ€stoichiometrically Labeled αâ€Synuclein Oligomers Determined by Singleâ€Molecule Photobleaching. Angewandte Chemie - International Edition, 2012, 51, 8821-8824.	7.2	74
48	Alphaâ€ S ynuclein Binds to the Inner Membrane of Mitochondria in an αâ€Helical Conformation. ChemBioChem, 2014, 15, 2499-2502.	1.3	73
49	CD-Tagging: A New Approach to Gene and Protein Discovery and Analysis. BioTechniques, 1996, 20, 896-904.	0.8	71
50	Double-stranded DNA Stimulates the Fibrillation of α-Synuclein in vitro and is Associated with the Mature Fibrils: An Electron Microscopy Study. Journal of Molecular Biology, 2004, 344, 929-938.	2.0	68
51	Membrane binding of oligomeric αâ€synuclein depends on bilayer charge and packing. FEBS Letters, 2008, 582, 3788-3792.	1.3	68
52	Nanometer Arrays of Functional Light Harvesting Antenna Complexes by Nanoimprint Lithography and Hostâ^'Guest Interactions. Journal of the American Chemical Society, 2008, 130, 8892-8893.	6.6	68
53	Long-Range Energy Propagation in Nanometer Arrays of Light Harvesting Antenna Complexes. Nano Letters, 2010, 10, 1450-1457.	4.5	68
54	Solubilization of lipids and lipid phases by the styrene–maleic acid copolymer. European Biophysics Journal, 2017, 46, 91-101.	1.2	66

#	Article	IF	CITATIONS
55	Cyanine dye–protein interactions: Looking for fluorescent probes for amyloid structures. Journal of Proteomics, 2007, 70, 727-733.	2.4	65
56	Assembly of Bionanostructures onto β-Cyclodextrin Molecular Printboards for Antibody Recognition and Lymphocyte Cell Counting. Journal of the American Chemical Society, 2008, 130, 6964-6973.	6.6	65
57	A comparative analysis of the aggregation behavior of amyloidâ€Î² peptide variants. FEBS Letters, 2012, 586, 4088-4093.	1.3	64
58	Concentration Dependence of α-Synuclein Fibril Length Assessed by Quantitative Atomic Force Microscopy and Statistical-Mechanical Theory. Biophysical Journal, 2008, 95, 4871-4878.	0.2	63
59	Observation of nearâ€bandâ€gap luminescence from boron nitride films. Applied Physics Letters, 1994, 65, 1251-1253.	1.5	62
60	Specific fluorescent detection of fibrillar α-synuclein using mono- and trimethine cyanine dyes. Bioorganic and Medicinal Chemistry, 2008, 16, 1452-1459.	1.4	62
61	Direct Evidence of Coexisting Horseshoe and Extended Helix Conformations of Membraneâ€Bound Alpha‧ynuclein. ChemPhysChem, 2011, 12, 267-269.	1.0	61
62	Predicting the Loading of Virus-Like Particles with Fluorescent Proteins. Biomacromolecules, 2014, 15, 558-563.	2.6	60
63	Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance. Optics Express, 2006, 14, 8745.	1.7	59
64	Tissue transglutaminase modulates αâ€synuclein oligomerization. Protein Science, 2008, 17, 1395-1402.	3.1	59
65	Photophysics and optical switching in green fluorescent protein mutants. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2974-2978.	3.3	59
66	Creating Nanopatterns of Hisâ€Tagged Proteins on Surfaces by Nanoimprint Lithography Using Specific NiNTAâ€Histidine Interactions. Small, 2007, 3, 1584-1592.	5.2	58
67	Spin‣abel EPR on αâ€Synuclein Reveals Differences in the Membrane Binding Affinity of the Two Antiparallel Helices. ChemBioChem, 2008, 9, 2411-2416.	1.3	57
68	Force detection in optical tweezers using backscattered light. Optics Express, 2005, 13, 1113.	1.7	56
69	Singleâ€Molecule FRET Reveals Structural Heterogeneity of SDSâ€Bound αâ€5ynuclein. ChemBioChem, 2009, 10, 436-439.	1.3	55
70	α‧ynuclein oligomers distinctively permeabilize complex model membranes. FEBS Journal, 2014, 281, 2838-2850.	2.2	55
71	Directed Formation of Micro- and Nanoscale Patterns of Functional Light-Harvesting LH2 Complexes. Journal of the American Chemical Society, 2007, 129, 14625-14631.	6.6	54
72	Interactions of Perylene Bisimide in the One-Dimensional Channels of Zeolite L. Journal of Physical Chemistry C, 2011, 115, 5974-5988.	1.5	53

#	Article	IF	CITATIONS
73	Atomic Force Microscopy under Controlled Conditions Reveals Structure of C-Terminal Region of α-Synuclein in Amyloid Fibrils. ACS Nano, 2012, 6, 5952-5960.	7.3	52
74	Polymorph-specific distribution of binding sites determines thioflavin-T fluorescence intensity in α-synuclein fibrils. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2018, 25, 189-196.	1.4	52
75	Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides. Journal of Lightwave Technology, 1997, 15, 990-997.	2.7	51
76	Self-Assembly of Protein Fibrils into Suprafibrillar Aggregates: Bridging the Nano- and Mesoscale. ACS Nano, 2014, 8, 5543-5551.	7.3	50
77	Oligomerization of DsRed is required for the generation of a functional red fluorescent chromophore. FEBS Letters, 2002, 525, 13-19.	1.3	49
78	Color Control of Natural Fluorescent Proteins by Photonic Crystals. Small, 2008, 4, 492-496.	5.2	49
79	DNA bending due to specific p53 and p53 core domain-DNA interactions visualized by electron microscopy. Journal of Molecular Biology, 1999, 294, 1015-1026.	2.0	48
80	Force spectroscopy and fluorescence microscopy of dsDNA-YOYO-1 complexes: implications for the structure of dsDNA in the overstretching region. Nucleic Acids Research, 2010, 38, 3423-3431.	6.5	47
81	Phosphorescence Reveals a Continued Slow Annealing of the Protein Core following Reactivation of Escherichia coli Alkaline Phosphatase. Biochemistry, 1995, 34, 1133-1136.	1.2	45
82	Expression of Sensitized Eu ³⁺ Luminescence at a Multivalent Interface. Journal of the American Chemical Society, 2009, 131, 12567-12569.	6.6	44
83	A Stable Lipid-Induced Aggregate of α-Synuclein. Journal of the American Chemical Society, 2010, 132, 4080-4082.	6.6	44
84	Hunting the Chameleon: Structural Conformations of the Intrinsically Disordered Protein Alpha‧ynuclein. ChemBioChem, 2012, 13, 761-768.	1.3	44
85	Amyloids of Alpha-Synuclein Affect the Structure and Dynamics of Supported Lipid Bilayers. Biophysical Journal, 2014, 106, 2585-2594.	0.2	44
86	Controlling Protein Surface Orientation by Strategic Placement of Oligo-Histidine Tags. ACS Nano, 2017, 11, 9068-9083.	7.3	44
87	Fibril Breaking Accelerates α-Synuclein Fibrillization. Journal of Physical Chemistry B, 2015, 119, 1912-1918.	1.2	43
88	Oligomers of Parkinson's Disease-Related α-Synuclein Mutants Have Similar Structures but Distinctive Membrane Permeabilization Properties. Biochemistry, 2015, 54, 3142-3150.	1.2	43
89	Anchoring of Histidineâ€Tagged Proteins to Molecular Printboards: Selfâ€assembly, Thermodynamic Modeling, and Patterning. Chemistry - A European Journal, 2008, 14, 2044-2051.	1.7	42
90	Membrane Interactions of Oligomeric Alpha-Synuclein: Potential Role in Parkinsons Disease. Current Protein and Peptide Science, 2010, 11, 334-342.	0.7	42

#	Article	IF	CITATIONS
91	Scanning force microscopy of the complexes of p53 core domain with supercoiled DNA 1 1Edited by M. Yaniv. Journal of Molecular Biology, 2000, 299, 585-592.	2.0	41
92	Distinct Mechanisms Determine α-Synuclein Fibril Morphology during Growth and Maturation. ACS Chemical Neuroscience, 2017, 8, 538-547.	1.7	41
93	Integrin-Dependent Activation of the JNK Signaling Pathway by Mechanical Stress. PLoS ONE, 2011, 6, e26182.	1.1	41
94	Intracellular manipulation of chromatin using magnetic nanoparticles. Chromosome Research, 2008, 16, 511-522.	1.0	40
95	Fabrication of cell container arrays with overlaid surface topographies. Biomedical Microdevices, 2012, 14, 95-107.	1.4	40
96	Room Temperature Spectrally Resolved Single-Molecule Spectroscopy Reveals New Spectral Forms and Photophysical Versatility of Aequorea Green Fluorescent Protein Variants. Biophysical Journal, 2004, 87, 4172-4179.	0.2	39
97	Membrane interactions and fibrillization of αâ€synuclein play an essential role in membrane disruption. FEBS Letters, 2014, 588, 4457-4463.	1.3	39
98	Kinetic measurements give new insights into lipid membrane permeabilization by α-synuclein oligomers. Molecular BioSystems, 2012, 8, 338-345.	2.9	38
99	Molecular Plasticity Regulates Oligomerization and Cytotoxicity of the Multipeptide-length Amyloid-β Peptide Pool. Journal of Biological Chemistry, 2012, 287, 36732-36743.	1.6	37
100	Resonance Energy Transfer in a Calcium Concentration-Dependent Cameleon Protein. Biophysical Journal, 2002, 83, 3499-3506.	0.2	36
101	Porous Multilayer-Coated AFM Tips for Dip-Pen Nanolithography of Proteins. Journal of the American Chemical Society, 2009, 131, 7526-7527.	6.6	36
102	Nanomechanical properties of single amyloid fibrils. Journal of Physics Condensed Matter, 2012, 24, 243101.	0.7	36
103	Enhancing spectral shifts of plasmon-coupled noble metal nanoparticles for sensing applications. Physical Chemistry Chemical Physics, 2015, 17, 422-427.	1.3	35
104	Binding of p53 and its core domain to supercoiled DNA. FEBS Journal, 2001, 268, 573-581.	0.2	34
105	Modulation of Protein Dimerization by a Supramolecular Host–Guest System. Chemistry - A European Journal, 2009, 15, 8779-8790.	1.7	34
106	Temperature-modulated quenching of quantum dots covalently coupled to chain ends of poly(<i>N</i> -isopropyl acrylamide) brushes on gold. Nanotechnology, 2009, 20, 185501.	1.3	34
107	Syntenin-1 and Ezrin Proteins Link Activated Leukocyte Cell Adhesion Molecule to the Actin Cytoskeleton. Journal of Biological Chemistry, 2014, 289, 13445-13460.	1.6	34
108	Solution conditions define morphological homogeneity of α-synuclein fibrils. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 2127-2134.	1.1	34

#	Article	IF	CITATIONS
109	Direct Observation of α-Synuclein Amyloid Aggregates in Endocytic Vesicles of Neuroblastoma Cells. PLoS ONE, 2016, 11, e0153020.	1.1	34
110	Picosecond Multiphoton Scanning Near-Field Optical Microscopy. Biophysical Journal, 1999, 76, 1092-1100.	0.2	32
111	Amyloid fibrils from the mammalian protein prothymosin $\hat{I}\pm$. FEBS Letters, 2002, 517, 37-40.	1.3	32
112	Single-molecule spectroscopy of fluorescent proteins. Analytical and Bioanalytical Chemistry, 2009, 393, 527-541.	1.9	32
113	Dendritic Ruthenium(II)â€Based Dyes Tuneable for Diagnostic or Therapeutic Applications. Chemistry - A European Journal, 2011, 17, 464-467.	1.7	32
114	Oriented Protein Immobilization using Covalent and Noncovalent Chemistry on a Thiol-Reactive Self-Reporting Surface. Journal of the American Chemical Society, 2013, 135, 3104-3111.	6.6	32
115	Local changes in the catalytic site of mammalian histidine decarboxylase can affect its global conformation and stability. FEBS Journal, 2003, 270, 4376-4387.	0.2	31
116	Protein Immobilization on Ni(II) Ion Patterns Prepared by Microcontact Printing and Dip-Pen Nanolithography. ACS Nano, 2010, 4, 1083-1091.	7.3	31
117	[6] Photophysics of green and red fluorescent proteins: Implications for quantitative microscopy. Methods in Enzymology, 2003, 360, 178-201.	0.4	30
118	Tri- and Pentamethine Cyanine Dyes for Fluorescent Detection of α-Synuclein Oligomeric Aggregates. Journal of Fluorescence, 2012, 22, 1441-1448.	1.3	30
119	Functionally different α-synuclein inclusions yield insight into Parkinson's disease pathology. Scientific Reports, 2016, 6, 23116.	1.6	30
120	Functional differences between Ultrabithorax protein isoforms in Drosophila melanogaster: evidence from elimination, substitution and ectopic expression of specific isoforms Genetics, 1994, 136, 979-991.	1.2	30
121	Continuous Wave Two-Photon Scanning Near-Field Optical Microscopy. Biophysical Journal, 1998, 75, 1513-1521.	0.2	29
122	New Insights into the Photophysics of DsRed by Multiparameter Spectroscopy on Single Proteins. Journal of Physical Chemistry B, 2008, 112, 7669-7674.	1.2	29
123	Multimode microscopy: spectral and lifetime imaging. Journal of the Royal Society Interface, 2009, 6, .	1.5	29
124	Cell biological applications of scanning near-field optical microscopy (SNOM). Cellular and Molecular Biology, 1998, 44, 689-700.	0.3	29
125	Fluorescence resonance energy transfer detected by scanning near-field optical microscopy. Journal of Microscopy, 1999, 194, 448-454.	0.8	28
126	Molecular Beacons: Nucleic Acid Hybridization and Emerging Applications. Journal of Biomolecular Structure and Dynamics, 2001, 19, 497-504.	2.0	28

#	Article	IF	CITATIONS
127	Classification of Dynamical Diffusion States in Single Molecule Tracking Microscopy. Biophysical Journal, 2014, 107, 588-598.	0.2	28
128	Alpha-Synuclein Disease Mutations Are Structurally Defective and Locally Affect Membrane Binding. Journal of the American Chemical Society, 2017, 139, 4254-4257.	6.6	28
129	Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces. Nanotechnology, 2008, 19, 025101.	1.3	27
130	Locally Resolved Membrane Binding Affinity of the N-Terminus of α-Synuclein. Biochemistry, 2012, 51, 3960-3962.	1.2	27
131	Red-shifted mutants of green fluorescent protein: reversible photoconversions studied by hole-burning and high-resolution spectroscopy. Chemical Physics, 2002, 275, 109-121.	0.9	26
132	Patterning of Peptide Nucleic Acids Using Reactive Microcontact Printing. Langmuir, 2011, 27, 1536-1542.	1.6	26
133	Size-selective detection in integrated optical interferometric biosensors. Optics Express, 2012, 20, 20934.	1.7	26
134	Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser. Laser and Photonics Reviews, 2013, 7, 589-598.	4.4	26
135	Two distinct β-sheet structures in Italian-mutant amyloid-beta fibrils: a potential link to different clinical phenotypes. Cellular and Molecular Life Sciences, 2015, 72, 4899-4913.	2.4	26
136	Conformational Compatibility Is Essential for Heterologous Aggregation of α-Synuclein. ACS Chemical Neuroscience, 2016, 7, 719-727.	1.7	26
137	Room-temperature in-cell EPR spectroscopy: alpha-Synuclein disease variants remain intrinsically disordered in the cell. Physical Chemistry Chemical Physics, 2017, 19, 18147-18151.	1.3	26
138	Single-molecule spectral dynamics at room temperature. Molecular Physics, 2009, 107, 1923-1942.	0.8	25
139	Structural model for $\hat{l}\pm$ -synuclein fibrils derived from high resolution imaging and nanomechanical studies using atomic force microscopy. Soft Matter, 2012, 8, 7215.	1.2	25
140	In vitro renaturation of bovine Î²â€łactoglobulin A leads to a biologically active but incompletely refolded state. Protein Science, 1996, 5, 2089-2094.	3.1	24
141	Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates. Physical Chemistry Chemical Physics, 2009, 11, 2525.	1.3	24
142	Excitation Spectra and Stokes Shift Measurements of Single Organic Dyes at Room Temperature. Journal of Physical Chemistry Letters, 2014, 5, 3259-3264.	2.1	24
143	Exogenous α-synuclein hinders synaptic communication in cultured cortical primary rat neurons. PLoS ONE, 2018, 13, e0193763.	1.1	24
144	Single Oligomer Spectra Probe Chromophore Nanoenvironments of Tetrameric Fluorescent Proteins. Journal of the American Chemical Society, 2006, 128, 8664-8670.	6.6	23

#	Article	IF	CITATIONS
145	Pyrylium monolayers as amino-reactive platform. Chemical Communications, 2010, 46, 4193.	2.2	22
146	Microbioreactors for Raman Microscopy of Stromal Cell Differentiation. Analytical Chemistry, 2010, 82, 1844-1850.	3.2	22
147	α-Synuclein Oligomers Stabilize Pre-Existing Defects in Supported Bilayers and Propagate Membrane Damage in a Fractal-Like Pattern. Langmuir, 2016, 32, 11827-11836.	1.6	22
148	Membrane-Bound Alpha Synuclein Clusters Induce Impaired Lipid Diffusion and Increased Lipid Packing. Biophysical Journal, 2016, 111, 2440-2449.	0.2	21
149	Resonance CARS Study of the Structure of "Green―and "Red―Chromophores within the Red Fluorescent Protein DsRed. Journal of the American Chemical Society, 2002, 124, 10992-10993.	6.6	20
150	Biofunctionalized Lipidâ^'Polymer Hybrid Nanocontainers with Controlled Permeability. Nano Letters, 2008, 8, 1105-1110.	4.5	20
151	Fluorescence Lifetime Spectroscopy and Imaging of Visible Fluorescent Proteins. , 2009, , 147-176.		20
152	Direct Visualization of Model Membrane Remodeling by α‧ynuclein Fibrillization. ChemPhysChem, 2017, 18, 1620-1626.	1.0	20
153	Aromatic Amino Acids Are Critical for Stability of the Bicoid Homeodomain. Journal of Biological Chemistry, 2001, 276, 21506-21511.	1.6	19
154	Dependence of silicon position-detector bandwidth on wavelength, power, and bias. Optics Letters, 2006, 31, 610.	1.7	19
155	Emission enhancement and lifetime modification of phosphorescence on silver nanoparticle aggregates. Physical Chemistry Chemical Physics, 2013, 15, 15734.	1.3	19
156	p53 Specifically Binds Triplex DNA In Vitro and in Cells. PLoS ONE, 2016, 11, e0167439.	1.1	19
157	Single molecule fluorescence spectroscopy of mutants of the Discosoma red fluorescent protein DsRed. Chemical Physics Letters, 2002, 362, 355-361.	1.2	18
158	Explorations of the application of cyanine dyes for quantitative α-synuclein detection. Biotechnic and Histochemistry, 2009, 84, 55-61.	0.7	18
159	Fast, single-step, and surfactant-free oligonucleotide modification of gold nanoparticles using DNA with a positively charged tail. Chemical Communications, 2013, 49, 11400.	2.2	18
160	Imaging the static dielectric constant in vitro and in living cells by a bioconjugable GFP chromophore analog. Chemical Communications, 2013, 49, 1723.	2.2	18
161	Elucidating the Aggregation Number of Dopamine-Induced α-Synuclein Oligomeric Assemblies. Biophysical Journal, 2014, 106, 440-446.	0.2	18
162	Combining optical tweezers and scanning probe microscopy to study DNA–protein interactions. Microscopy Research and Technique, 2007, 70, 26-33.	1.2	17

#	Article	IF	CITATIONS
163	A Four-Amino Acid Linker between Repeats in the α-Synuclein Sequence Is Important for Fibril Formation. Biochemistry, 2014, 53, 279-281.	1.2	17
164	Hydrophobic-Interaction-Induced Stiffening of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>α</mml:mi> -Synuclein Fibril Networks. Physical Review Letters, 2018, 120, 208102.</mml:math 	2.9	17
165	Fabrication and Visualization of Metalâ€lon Patterns on Glass by Dipâ€Pen Nanolithography. ChemPhysChem, 2008, 9, 1680-1687.	1.0	16
166	A Molecular Beacon Strategy for Real-Time Monitoring of Triplex DNA Formation Kinetics. Oligonucleotides, 2002, 12, 145-154.	4.4	15
167	Microspectroscopic analysis of green fluorescent proteins infiltrated into mesoporous silica nanochannels. Journal of Colloid and Interface Science, 2011, 356, 123-130.	5.0	15
168	Identification, cloning and characterization of a new DNA-binding protein from the hyperthermophilic methanogen Methanopyrus kandleri. Nucleic Acids Research, 2002, 30, 685-694.	6.5	14
169	An ultrasensitive Young interferometer handheld sensor for rapid virus detection. Expert Review of Medical Devices, 2007, 4, 447-454.	1.4	14
170	Spectral Versatility of Single Reef Coral Fluorescent Proteins Detected by Spectrallyâ€Resolved Single Molecule Spectroscopy. ChemPhysChem, 2008, 9, 310-315.	1.0	14
171	Waveguide-coupled micro-ball lens array suitable for mass fabrication. Optics Express, 2015, 23, 22414.	1.7	14
172	Quantitative Determination of Dark Chromophore Population Explains the Apparent Low Quantum Yield of Red Fluorescent Proteins. Journal of Physical Chemistry B, 2020, 124, 1383-1391.	1.2	14
173	A hybrid total internal reflection fluorescence and optical tweezers microscope to study cell adhesion and membrane protein dynamics of single living cells. Journal of Microscopy, 2009, 233, 84-92.	0.8	12
174	Studies of Interaction Between Cyanine Dye T-284 and Fibrillar Alpha-Synuclein. Journal of Fluorescence, 2010, 20, 1267-1274.	1.3	12
175	Visualizing Resonance Energy Transfer in Supramolecular Surface Patterns of <i>β</i> â€CDâ€Functionalized Quantum Dot Hosts and Organic Dye Guests by Fluorescence Lifetime Imaging. Small, 2010, 6, 2870-2876.	5.2	12
176	Membrane Binding of Parkinson's Protein αâ€5ynuclein: Effect of Phosphorylation at Positions 87 and 129 by the S to D Mutation Approach. Israel Journal of Chemistry, 2017, 57, 762-770.	1.0	12
177	Time-resolved tryptophan phosphorescence spectroscopy: a sensitive probe of protein folding and structure. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2, 1107-1114.	1.9	11
178	Blinking statistics of colloidal quantum dots at different excitation wavelengths. RSC Advances, 2013, 3, 17440.	1.7	11
179	Alphaâ€Synuclein Amyloid Oligomers Act as Multivalent Nanoparticles to Cause Hemifusion in Negatively Charged Vesicles. Small, 2015, 11, 2257-2262.	5.2	11
180	Quantitative Characterization of Protein Nanostructures Using Atomic Force Microscopy. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 6609-12.	0.5	10

#	Article	IF	CITATIONS
181	Spatially resolved local intracellular chemical sensing using magnetic particles. Sensors and Actuators B: Chemical, 2010, 148, 531-538.	4.0	10
182	Room temperature excitation spectroscopy of single quantum dots. Beilstein Journal of Nanotechnology, 2011, 2, 516-524.	1.5	10
183	Analysis of single quantum-dot mobility inside 1D nanochannel devices. Nanotechnology, 2011, 22, 275201.	1.3	10
184	A Method for Spatially Resolved Local Intracellular Mechanochemical Sensing and Organelle Manipulation. Biophysical Journal, 2012, 103, 395-404.	0.2	10
185	Chip based common-path optical coherence tomography system with an on-chip microlens and multi-reference suppression algorithm. Optics Express, 2016, 24, 12635.	1.7	10
186	Intracellular Protein–Lipid Interactions Studied by Rapid-Scan Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 2471-2475.	2.1	10
187	Patterning perylenes on surfaces using thiol–ene chemistry. Journal of Materials Chemistry, 2012, 22, 16606.	6.7	9
188	Plasticity of the MAPK Signaling Network in Response to Mechanical Stress. PLoS ONE, 2014, 9, e101963.	1.1	9
189	Spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression inÂvitro and inÂvivo. Biomaterials, 2015, 61, 190-202.	5.7	9
190	Direct patterning of nanoparticles and biomolecules by liquid nanodispensing. Nanoscale, 2015, 7, 4497-4504.	2.8	9
191	Title is missing!. Journal of Fluorescence, 1997, 7, 381-385.	1.3	8
192	FRET Pair Printing of Fluorescent Proteins. Langmuir, 2009, 25, 7019-7024.	1.6	8
193	Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation. Nanoscale, 2012, 4, 2072.	2.8	8
194	Parkinson's Protein α-Synuclein Binds Efficiently and with a Novel Conformation to Two Natural Membrane Mimics. PLoS ONE, 2015, 10, e0142795.	1.1	8
195	Lipid-Conjugated Rigidochromic Probe Discloses Membrane Alteration in Model Cells of Krabbe Disease. Biophysical Journal, 2019, 116, 477-486.	0.2	6
196	Orthogonal supramolecular protein assembly on patterned bifunctional surfaces. Chemical Communications, 2018, 54, 1615-1618.	2.2	5
197	Spermine induced reversible collapse of deoxyribonucleic acid-bridged nanoparticle-based assemblies. Nano Research, 2018, 11, 383-396.	5.8	5
198	Effects of Oxidation Agents and Metal Ions on Binding of p53 to Supercoiled DNA. Journal of Biomolecular Structure and Dynamics, 2000, 17, 177-183.	2.0	4

#	Article	IF	CITATIONS
199	Modeling and Experimental Verification of the Dynamic Interaction of an AFM-Tip With a Photonic Crystal Microcavity. IEEE Photonics Technology Letters, 2008, 20, 57-59.	1.3	4
200	Dark proteins disturb multichromophore coupling in tetrameric fluorescent proteins. Journal of Biophotonics, 2011, 4, 114-121.	1.1	4
201	Microcantilever based distance control between a probe and a surface. Review of Scientific Instruments, 2015, 86, 063706.	0.6	4
202	Fluorescence Methods for Unraveling Oligomeric Amyloid Intermediates. Methods in Molecular Biology, 2016, 1345, 151-169.	0.4	4
203	Spectral emission imaging to map photonic properties below the crystal surface of 3D photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2101.	0.9	3
204	Multiparameter single molecule spectroscopy gives insight into the complex photophysics of fluorescence energy transfer (FRET) coupled biosystems. , 2009, , .		3
205	Patterning: Strategies for Patterning Biomolecules with Dip-Pen Nanolithography (Small 8/2011). Small, 2011, 7, 982-982.	5.2	3
206	Singleâ€Molecule DNA Force Spectroscopy to Probe Interactions with the Triâ€Peptide Lysâ€Trpâ€Lys. ChemPhysChem, 2011, 12, 2545-2548.	1.0	3
207	Elucidating the Alpha-Synuclein Fibril Fold by Pulsed EPR. Biophysical Journal, 2012, 102, 454a.	0.2	3
208	Wafer-scale thin encapsulated two-dimensional nanochannels and its application toward visualization of single molecules. Journal of Colloid and Interface Science, 2012, 367, 455-459.	5.0	3
209	Photosynthesis in a different light: spectro-microscopy for in vivo characterization of chloroplasts. Frontiers in Plant Science, 2014, 5, 292.	1.7	3
210	Non-uniform self-assembly: On the anisotropic architecture of α-synuclein supra-fibrillar aggregates. Scientific Reports, 2017, 7, 7699.	1.6	3
211	Intracellular Manipulation of Phagosomal Transport and Maturation Using Magnetic Tweezers. Methods in Molecular Biology, 2017, 1519, 93-112.	0.4	3
212	Rapid, ultrasensitive detection of microorganisms based on interferometry and lab-on-a-chip nanotechnology. Proceedings of SPIE, 2009, , .	0.8	2
213	Characterizing Nanoscale Morphologic and Mechanical Properties of α-Synuclein Amyloid Fibrils with Atomic Force Microscopy. , 2014, , 309-322.		2
214	Three Long-Range Distance Constraints and an Approach Towards a Model for the α-Synuclein-Fibril Fold. Applied Magnetic Resonance, 2015, 46, 369-388.	0.6	2
215	Size-selective analyte detection with a Young interferometer sensor using multiple wavelengths. Optics Express, 2016, 24, 8594.	1.7	2
216	A Fast and Sensitive Integrated Young Interferometer Biosensor. Integrated Analytical Systems, 2009, , 265-295.	0.4	2

#	Article	IF	CITATIONS
217	<title>Transient laser spectroscopy of protein folding: detection and characterization of slow annealing processes</title> . , 1995, , .		1
218	Scanning Near-Field Optical Imaging and Spectroscopy in Cell Biology. , 0, , 271-290.		1
219	Simultaneous time-resolved measurement of the reaction rates and the refractive index of photopolymerization processes. Applied Optics, 2010, 49, 3316.	2.1	1
220	On-chip microparticle detection and sizing using a dual-wavelength waveguide laser. , 2013, , .		1
221	Supporting data of spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo. Data in Brief, 2015, 5, 84-94.	0.5	1
222	Fibril Breaking Accelerates α-Synuclein Fibrillization. Biophysical Journal, 2015, 108, 63a.	0.2	1
223	2.19 Biophysical Analysis of Amyloid Formation. , 2017, , 438-451.		1
224	Room Temperature Tryptophan Phosphorescence as a Probe of Structural and Dynamic Properties of Proteins. , 2002, , 43-65.		1
225	Multimodal Fluorescence Imaging Spectroscopy. Methods in Molecular Biology, 2014, 1076, 521-536.	0.4	1
226	Application of MALDI-TOF mass spectrometry for study on fibrillar and oligomeric aggregates of alpha-synuclein. Biopolymers and Cell, 2014, 30, 190-196.	0.1	1
227	Coherent control of fluorescent proteins with a compact high-resolution spectral phase shaper. , 2006, , .		1
228	Biophysical Analysis of Amyloid Formation. , 2011, , 347-359.		1
229	Cathodoluminescence Spectroscopy of Boron Nitride Films. Materials Research Society Symposia Proceedings, 1994, 339, 339.	0.1	Ο
230	Watching Proteins Fold with Transient Laser Spectroscopy. Optics and Photonics News, 1995, 6, 37.	0.4	0
231	Protein dynamics studied by room-temperature phosphorescence spectroscopy. , 1998, , .		Ο
232	Force constant calibration corrections for silicon position detectors in the near-infrared. Optics Express, 2006, 14, 8476.	1.7	0
233	Controlling fluorescent proteins by manipulating the local density of photonic states. Proceedings of SPIE, 2009, , .	0.8	0
234	Photophysical characteristics of green fluorescent proteins embedded in mesoporous silica hosts. , 2010, , .		0

#	Article	IF	CITATIONS
235	Spectral Versatility of Fluorescent Proteins Observed on the Single Molecule Level. Springer Series on Fluorescence, 2011, , 217-240.	0.8	0
236	Nanobiophotonics: Using the nanophotonics toolbox to manipulate biological fluorophores. , 2011, , .		0
237	Aggregation and Membrane Interaction of Alpha-Synuclein and Amyloid-Beta by Electron Paramagnetic Resonance. Biophysical Journal, 2013, 104, 52a.	0.2	0
238	Studying T-Cell Co-Receptors with Magnetic Probes. Biophysical Journal, 2013, 104, 500a-501a.	0.2	0
239	Can nanophotonics control the Förster resonance energy transfer efficiency?. , 2013, , .		0
240	Background Reduction in a Young Interferometer Biosensor. , 2014, , .		0
241	Long-Range Distance Constraints for the Fibril Fold of Parkinson's Protein Alpha-Synuclein. Biophysical Journal, 2014, 106, 269a.	0.2	0
242	Association of α-Synuclein with Lipid Vesicles. Stopped-Flow Kinetics of Concerted Binding and Conformational Change. Biophysical Journal, 2014, 106, 248a.	0.2	0
243	The Formation of Higher Order Structures by the Neuronal Protein Alpha-Synuclein: Self-Assembly Over Multiple Length Scales. Biophysical Journal, 2014, 106, 683a-684a.	0.2	0
244	Protein fibrils as scaffold material for cartilage tissue engineering: effects on cell viability and proliferation. Osteoarthritis and Cartilage, 2014, 22, S488-S489.	0.6	0
245	Using Magnetic Probes to Study Receptor Clustering in Live Cells. Biophysical Journal, 2014, 106, 20a.	0.2	0
246	How Do Lipids Localize in Lewy Bodies?. Biophysical Journal, 2014, 106, 301a.	0.2	0
247	Toward efficient modification of large gold nanoparticles with DNA. , 2014, , .		Ο
248	Disease Related Point Mutations and Solution Conditions Determine Fibrillization Behavior of α-Synuclein. Biophysical Journal, 2015, 108, 63a.	0.2	0
249	Microtubules Shape GPCR Spatiotemporal Membrane Organization and Function by Scaffolding Cortical Signaling Hubs. Biophysical Journal, 2015, 108, 95a.	0.2	0
250	Photonic effects on the fluorescence lifetimes of dyes in thin PVA layers. Proceedings of SPIE, 2015, , .	0.8	0
251	The Alpha-Synuclein Fibril Fold - Comparing Models from Electron Paramagnetic Resonance and NMR. Biophysical Journal, 2017, 112, 447a.	0.2	0
252	Controlling Fluorescent Proteins by Manipulating the Local Density of Photonic States. , 2009, , .		0

#	Article	IF	CITATIONS
253	Coming to Grips with Amyloid Oligomers: Single Molecule Photobleaching Approaches. , 2014, , .		0