Nathalie M. Delzenne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8193820/publications.pdf

Version: 2024-02-01

305 papers 50,644 citations

²⁵³⁸ 96 h-index

216 g-index

324 all docs

324 docs citations

times ranked

324

38443 citing authors

#	Article	IF	CITATIONS
1	Nutritional management of individuals with obesity and COVID-19: ESPEN expert statements and practical guidance. Clinical Nutrition, 2022, 41, 2869-2886.	2.3	30
2	<i>Dysosmobacter welbionis</i> is a newly isolated human commensal bacterium preventing diet-induced obesity and metabolic disorders in mice. Gut, 2022, 71, 534-543.	6.1	95
3	Exploring the endocannabinoidome in genetically obese (ob/ob) and diabetic (db/db) mice: Links with inflammation and gut microbiota. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159056.	1.2	12
4	Commentary on: prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 2022, 127, 554-555.	1,2	7
5	Camu-Camu Reduces Obesity and Improves Diabetic Profiles of Obese and Diabetic Mice: A Dose-Ranging Study. Metabolites, 2022, 12, 301.	1.3	7
6	Physical activity enhances the improvement of body mass index and metabolism by inulin: a multicenter randomized placebo-controlled trial performed in obese individuals. BMC Medicine, 2022, 20, 110.	2.3	21
7	Restoring an adequate dietary fiber intake by inulin supplementation: a pilot study showing an impact on gut microbiota and sociability in alcohol use disorder patients. Gut Microbes, 2022, 14, 2007042.	4.3	15
8	Microbiota and Metabolite Profiling as Markers of Mood Disorders: A Cross-Sectional Study in Obese Patients. Nutrients, 2022, 14, 147.	1.7	6
9	Nutrition and Microbiome. Handbook of Experimental Pharmacology, 2022, , 57-73.	0.9	4
10	Elucidating the role of the gut microbiota in the physiological effects of dietary fiber. Microbiome, 2022, 10, 77.	4.9	31
11	Liver alterations are not improved by inulin supplementation in alcohol use disorder patients during alcohol withdrawal: A pilot randomized, double-blind, placebo-controlled study. EBioMedicine, 2022, 80, 104033.	2.7	7
12	Breath volatile metabolome reveals the impact of dietary fibres on the gut microbiota: Proof of concept in healthy volunteers. EBioMedicine, 2022, 80, 104051.	2.7	7
13	Chitin-glucan supplementation improved postprandial metabolism and altered gut microbiota in subjects at cardiometabolic risk in a randomized trial. Scientific Reports, 2022, 12, .	1.6	6
14	Chitin-Glucan Supplementation Altered Gut Microbiota and Improved Postprandial Metabolism in Subjects at Cardiometabolic Risk. Current Developments in Nutrition, 2022, 6, 331.	0.1	0
15	Implication of the Gut Microbiota in Metabolic Inflammation Associated with Nutritional Disorders and Obesity. Molecular Nutrition and Food Research, 2021, 65, e1900481.	1.5	8
16	Noninvasive monitoring of fibre fermentation in healthy volunteers by analyzing breath volatile metabolites: lessons from the FiberTAG intervention study. Gut Microbes, 2021, 13, 1-16.	4.3	8
17	Improvement of gastrointestinal discomfort and inflammatory status by a synbiotic in middle-aged adults: a double-blind randomized placebo-controlled trial. Scientific Reports, 2021, 11, 2627.	1.6	18
18	Gut microbes participate in food preference alterations during obesity. Gut Microbes, 2021, 13, 1959242.	4.3	35

#	Article	IF	Citations
19	Beneficial Effects of Akkermansia muciniphila Are Not Associated with Major Changes in the Circulating Endocannabinoidome but Linked to Higher Mono-Palmitoyl-Glycerol Levels as New PPARα Agonists. Cells, 2021, 10, 185.	1.8	43
20	Linking the Endocannabinoidome with Specific Metabolic Parameters in an Overweight and Insulin-Resistant Population: From Multivariate Exploratory Analysis to Univariate Analysis and Construction of Predictive Models. Cells, 2021, 10, 71.	1.8	6
21	Multiâ€compartment metabolomics and metagenomics reveal major hepatic and intestinal disturbances in cancer cachectic mice. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 456-475.	2.9	30
22	Prebiotic dietary fibre intervention improves fecal markers related to inflammation in obese patients: results from the Food4Gut randomized placebo-controlled trial. European Journal of Nutrition, 2021, 60, 3159-3170.	1.8	46
23	Hepatoprotective Effects of Indole, a Gut Microbial Metabolite, in Leptin-Deficient Obese Mice. Journal of Nutrition, 2021, 151, 1507-1516.	1.3	27
24	Prebiotic Effect of Berberine and Curcumin Is Associated with the Improvement of Obesity in Mice. Nutrients, 2021, 13, 1436.	1.7	22
25	Modulation of the gut microbiota-adipose tissue-muscle interactions by prebiotics. Journal of Endocrinology, 2021, 249, R1-R23.	1.2	17
26	Specific gut microbial, biological, and psychiatric profiling related to binge eating disorders: A cross-sectional study in obese patients. Clinical Nutrition, 2021, 40, 2035-2044.	2.3	30
27	Dieting for Success: What Baseline Gut Microbiota Can Tell You About Your Chances of Losing Weight. Gastroenterology, 2021, 160, 1933-1935.	0.6	2
28	Prebiotic effect on mood in obese patients is determined by the initial gut microbiota composition: A randomized, controlled trial. Brain, Behavior, and Immunity, 2021, 94, 289-298.	2.0	35
29	Dietary fiber deficiency as a component of malnutrition associated with psychological alterations in alcohol use disorder. Clinical Nutrition, 2021, 40, 2673-2682.	2.3	11
30	Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome, 2021, 9, 147.	4.9	92
31	Biomarkers for assessment of intestinal permeability in clinical practice. American Journal of Physiology - Renal Physiology, 2021, 321, G11-G17.	1.6	65
32	A dynamic association between myosteatosis and liver stiffness: Results from a prospective interventional study in obese patients. JHEP Reports, 2021, 3, 100323.	2.6	24
33	Alterations of kynurenine pathway in alcohol use disorder and abstinence: a link with gut microbiota, peripheral inflammation and psychological symptoms. Translational Psychiatry, 2021, 11, 503.	2.4	32
34	Microbiota analysis and transient elastography reveal new extra-hepatic components of liver steatosis and fibrosis in obese patients. Scientific Reports, 2021, 11, 659.	1.6	29
35	Inflammationâ€induced cholestasis in cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 70-90.	2.9	24
36	Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut Microbes, 2021, 13, 1994270.	4.3	24

#	Article	IF	Citations
37	Bile Acid Dysregulation Is Intrinsically Related to Cachexia in Tumor-Bearing Mice. Cancers, 2021, 13, 6389.	1.7	4
38	Nutritional interest of dietary fiber and prebiotics in obesity: Lessons from the MyNewGut consortium. Clinical Nutrition, 2020, 39, 414-424.	2.3	77
39	<i>In vitro</i> approach to evaluate the fermentation pattern of inulin-rich food in obese individuals. British Journal of Nutrition, 2020, 123, 472-479.	1.2	3
40	Food for thought about manipulating gut bacteria. Nature, 2020, 577, 32-34.	13.7	16
41	Gut Microbiota-Induced Changes in \hat{l}^2 -Hydroxybutyrate Metabolism Are Linked to Altered Sociability and Depression in Alcohol Use Disorder. Cell Reports, 2020, 33, 108238.	2.9	87
42	Rhubarb Supplementation Prevents Diet-Induced Obesity and Diabetes in Association with Increased Akkermansia muciniphila in Mice. Nutrients, 2020, 12, 2932.	1.7	45
43	Microbiome response to diet: focus on obesity and related diseases. Reviews in Endocrine and Metabolic Disorders, 2020, 21, 369-380.	2.6	28
44	Obesity and tripleâ€negativeâ€breastâ€cancer: Is apelin a new key target?. Journal of Cellular and Molecular Medicine, 2020, 24, 10233-10244.	1.6	16
45	Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats. Nutrients, 2020, 12, 3451.	1.7	5
46	Intestinal NAPE-PLD contributes to short-term regulation of food intake via gut-to-brain axis. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E647-E657.	1.8	14
47	Acetate: Friend or foe against breast tumour growth in the context of obesity?. Journal of Cellular and Molecular Medicine, 2020, 24, 14195-14204.	1.6	4
48	Development of a Repertoire and a Food Frequency Questionnaire for Estimating Dietary Fiber Intake Considering Prebiotics: Input from the FiberTAG Project. Nutrients, 2020, 12, 2824.	1.7	8
49	Comparison of the effects of soluble corn fiber and fructooligosaccharides on metabolism, inflammation, and gut microbiome of high-fat diet-fed mice. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E779-E791.	1.8	19
50	Metabolite profiling reveals the interaction of chitin-glucan with the gut microbiota. Gut Microbes, 2020, 12, 1810530.	4.3	31
51	Gut microbiota modulation with long-chain corn bran arabinoxylan in adults with overweight and obesity is linked to an individualized temporal increase in fecal propionate. Microbiome, 2020, 8, 118.	4.9	81
52	The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 687-701.	8.2	826
53	Metabolic breath signature of $13C$ -enriched wheat bran consumption related to gut fermentation in humans: a Fiber-TAG study. Proceedings of the Nutrition Society, 2020, 79, .	0.4	0
54	Influence of the Mediterranean diet on the production of short-chain fatty acids in women at risk for breast cancer (LIBRE). Proceedings of the Nutrition Society, 2020, 79, .	0.4	2

#	Article	IF	CITATIONS
55	New determinants of liver steatosis and fibrosis in obese patients: results of a prospective clinical study. Clinical Nutrition ESPEN, 2020, 40, 438-439.	0.5	1
56	Fecal metabolites reflecting the interaction between prebiotic dietary fiber and the gut microbiota in obese patients. Clinical Nutrition ESPEN, 2020, 40, 521-522.	0.5	2
57	Hepatic NAPE-PLD Is a Key Regulator of Liver Lipid Metabolism. Cells, 2020, 9, 1247.	1.8	17
58	The colonoscopic leakage model: a new model to study the intestinal wound healing at molecular level. Gut, 2020, 69, 2071-2073.	6.1	1
59	Breath volatile compounds and conjugated polyunsaturated fatty acids as metabolic biomarkers reflecting the interaction between chitin-glucan and the gut microbiota Proceedings of the Nutrition Society, 2020, 79, .	0.4	0
60	Development of a dedicated repertoire and food frequency questionnaire for estimating dietary fiber intake taking into account prebiotic (oligo)saccharides. Proceedings of the Nutrition Society, 2020, 79, .	0.4	0
61	Pasteurized <i>Akkermansia muciniphila</i> increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes, 2020, 11, 1231-1245.	4.3	134
62	The FiberTAG project: Tagging dietary fibre intake by measuring biomarkers related to the gut microbiota and their interest for health. Nutrition Bulletin, 2020, 45, 59-65.	0.8	10
63	The nuclear receptor FXR inhibits Glucagon-Like Peptide-1 secretion in response to microbiota-derived Short-Chain Fatty Acids. Scientific Reports, 2020, 10, 174.	1.6	45
64	Synbiotics Alter Fecal Microbiomes, But Not Liver Fat or Fibrosis, in a Randomized Trial of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology, 2020, 158, 1597-1610.e7.	0.6	123
65	Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut, 2020, 69, 1975-1987.	6.1	141
66	Link between gut microbiota and health outcomes in inulin -treated obese patients: Lessons from the Food4Gut multicenter randomized placebo-controlled trial. Clinical Nutrition, 2020, 39, 3618-3628.	2.3	87
67	From correlation to causality: the case of <i>Subdoligranulum</i> . Gut Microbes, 2020, 12, 1849998.	4.3	192
68	Dysosmobacter welbionis gen. nov., sp. nov., isolated from human faeces and emended description of the genus Oscillibacter. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 4851-4858.	0.8	29
69	Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nature Medicine, 2019, 25, 1096-1103.	15.2	1,281
70	Milk Polar Lipids in a Highâ€Fat Diet Can Prevent Body Weight Gain: Modulated Abundance of Gut Bacteria in Relation with Fecal Loss of Specific Fatty Acids. Molecular Nutrition and Food Research, 2019, 63, e1801078.	1.5	35
71	SUN-PO285: Implication of the Gut Microbiota in Personalized Metabolic Response to Dietary Inulin in Obese Patients. Clinical Nutrition, 2019, 38, S164.	2.3	1
72	The Janus Face of Cereals: Wheatâ€Derived Prebiotics Counteract the Detrimental Effect of Gluten on Metabolic Homeostasis in Mice Fed a Highâ€Fat/Highâ€Sucrose Diet. Molecular Nutrition and Food Research, 2019, 63, e1900632.	1.5	15

#	Article	lF	Citations
73	Functional Effects of EPS-Producing Bifidobacterium Administration on Energy Metabolic Alterations of Diet-Induced Obese Mice. Frontiers in Microbiology, 2019, 10, 1809.	1.5	35
74	PT04.1: Evaluation of Synergic Potential Effects Between Inulin and Voluntary Exercise During Obesity. Clinical Nutrition, 2019, 38, S40.	2.3	0
75	Chitin–glucan and pomegranate polyphenols improve endothelial dysfunction. Scientific Reports, 2019, 9, 14150.	1.6	25
76	Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nature Communications, 2019, 10, 457.	5.8	100
77	Hepatic MyD88 regulates liver inflammation by altering synthesis of oxysterols. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E99-E108.	1.8	15
78	Effects of a diet based on inulin-rich vegetables on gut health and nutritional behavior in healthy humans. American Journal of Clinical Nutrition, 2019, 109, 1683-1695.	2.2	121
79	Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gutâ \in "liver axis. Proceedings of the Nutrition Society, 2019, 78, 319-328.	0.4	84
80	A Preventive Prebiotic Supplementation Improves the Sweet Taste Perception in Diet-Induced Obese Mice. Nutrients, $2019,11,549.$	1.7	17
81	Microbiota and nonalcoholic fatty liver disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2019, 22, 393-400.	1.3	28
82	Editorial. Current Opinion in Clinical Nutrition and Metabolic Care, 2019, 22, 425-426.	1.3	0
83	Effects of prebiotics on affect and cognition in human intervention studies. Nutrition Reviews, 2019, 77, 81-95.	2.6	25
84	The gut microbiota: A new target in the management of alcohol dependence?. Alcohol, 2019, 74, 105-111.	0.8	36
85	High-fat diet induces depression-like behaviour in mice associated with changes in microbiome, neuropeptide Y, and brain metabolome. Nutritional Neuroscience, 2019, 22, 877-893.	1.5	133
86	Butyricimonas faecalis sp. nov., isolated from human faeces and emended description of the genus Butyricimonas. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 833-838.	0.8	17
87	Wheat-derived arabinoxylan oligosaccharides with bifidogenic properties abolishes metabolic disorders induced by western diet in mice. Nutrition and Diabetes, 2018, 8, 15.	1.5	28
88	Metformin. Current Opinion in Clinical Nutrition and Metabolic Care, 2018, 21, 294-301.	1.3	84
89	Characterization of fructans and dietary fibre profiles in raw and steamed vegetables. International Journal of Food Sciences and Nutrition, 2018, 69, 682-689.	1.3	33
90	Contribution of gut microbiota–host cooperation to drug efficacy. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 69-70.	8.2	10

#	Article	IF	CITATIONS
91	Particle size determines the anti-inflammatory effect of wheat bran in a model of fructose over-consumption: Implication of the gut microbiota. Journal of Functional Foods, 2018, 41, 155-162.	1.6	24
92	Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut, 2018, 67, 271-283.	6.1	150
93	Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E334-E352.	1.8	119
94	Benefits and risk management of functional foods in the context of chronic diseases. Current Opinion in Clinical Nutrition and Metabolic Care, 2018, 21, 449-450.	1.3	2
95	The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia, 2018, 61, 1838-1848.	2.9	76
96	Design and rationale of the INSYTE study: A randomised, placebo controlled study to test the efficacy of a synbiotic on liver fat, disease biomarkers and intestinal microbiota in non-alcoholic fatty liver disease. Contemporary Clinical Trials, 2018, 71, 113-123.	0.8	31
97	The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB Journal, 2018, 32, 6681-6693.	0.2	137
98	Microbiome metabolomics reveals new drivers of human liver steatosis. Nature Medicine, 2018, 24, 906-907.	15.2	25
99	Inulin Improves Postprandial Hypertriglyceridemia by Modulating Gene Expression in the Small Intestine. Nutrients, 2018, 10, 532.	1.7	24
100	Increased Serpina3n release into circulation during glucocorticoidâ€mediated muscle atrophy. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 929-946.	2.9	53
101	Towards microbiome-informed dietary recommendations for promoting metabolic and mental health: Opinion papers of the MyNewGut project. Clinical Nutrition, 2018, 37, 2191-2197.	2.3	29
102	Klebsiella oxytoca expands in cancer cachexia and acts as a gut pathobiont contributing to intestinal dysfunction. Scientific Reports, 2018, 8, 12321.	1.6	71
103	Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Oncotarget, 2018, 9, 18224-18238.	0.8	90
104	The Potential Role of the Dipeptidyl Peptidase-4-Like Activity From the Gut Microbiota on the Host Health. Frontiers in Microbiology, 2018, 9, 1900.	1.5	47
105	Implication of trans-11,trans-13 conjugated linoleic acid in the development of hepatic steatosis. PLoS ONE, 2018, 13, e0192447.	1.1	8
106	Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Molecular Nutrition and Food Research, 2017, 61, 1500899.	1.5	138
107	The link between inflammation, bugs, the intestine and the brain in alcohol dependence. Translational Psychiatry, 2017, 7, e1048-e1048.	2.4	120
108	Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut, 2017, 66, 620-632.	6.1	125

#	Article	IF	Citations
109	Novel insight into the role of microbiota in colorectal surgery. Gut, 2017, 66, 738-749.	6.1	82
110	A role for the peripheral immune system in the development of alcohol use disorders?. Neuropharmacology, 2017, 122, 148-160.	2.0	66
111	Functional foods and dietary supplements in 2017. Current Opinion in Clinical Nutrition and Metabolic Care, 2017, 20, 453-455.	1.3	5
112	Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Research Reviews, 2017, 40, 95-119.	5.0	337
113	Ffar2 expression regulates leukaemic cell growth in vivo. British Journal of Cancer, 2017, 117, 1336-1340.	2.9	12
114	Fat binding capacity and modulation of the gut microbiota both determine the effect of wheat bran fractions on adiposity. Scientific Reports, 2017, 7, 5621.	1.6	51
115	A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice. Journal of Nutritional Biochemistry, 2017, 49, 15-21.	1.9	64
116	The Dietary Fibers–FODMAPs Controversy. Cereal Foods World, 2017, 62, 98-103.	0.7	13
117	Towards a multidisciplinary approach to understand and manage obesity and related diseases. Clinical Nutrition, 2017, 36, 917-938.	2.3	141
118	Carbohydrates and insulin resistance in clinical nutrition: Recommendations from the ESPEN expert group. Clinical Nutrition, 2017, 36, 355-363.	2.3	68
119	A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine, 2017, 23, 107-113.	15.2	1,451
120	Spirulina Protects against Hepatic Inflammation in Aging: An Effect Related to the Modulation of the Gut Microbiota?. Nutrients, 2017, 9, 633.	1.7	49
121	Alcohol-Dependence and the Microbiota-Gut-Brain Axis. , 2016, , 363-390.		3
122	Gut Microbiota and Metabolism. , 2016, , 391-401.		5
123	Intestinal Sucrase as a Novel Target Contributing to the Regulation of Glycemia by Prebiotics. PLoS ONE, 2016, 11, e0160488.	1.1	27
124	Nutritional depletion in ⟨i>n⟨ i>â€3 PUFA in apoE knockâ€out mice: A new model of endothelial dysfunction associated with fatty liver disease. Molecular Nutrition and Food Research, 2016, 60, 2198-2207.	1.5	4
125	Microbiome and metabolic disorders related to obesity: Which lessons to learn from experimental models?. Trends in Food Science and Technology, 2016, 57, 256-264.	7.8	26
126	Endocannabinoids $\hat{a}\in$ " at the crossroads between the gut microbiota and host metabolism. Nature Reviews Endocrinology, 2016, 12, 133-143.	4.3	275

#	Article	IF	Citations
127	Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME Journal, 2016, 10, 1456-1470.	4.4	149
128	Adipose tissue adaptive response to <i>trans</i> â€10, <i>cisâ€</i> 12â€conjugated linoleic acid engages alternatively activated M2 macrophages. FASEB Journal, 2016, 30, 241-251.	0.2	12
129	Impact of Diet Composition on Blood Glucose Regulation. Critical Reviews in Food Science and Nutrition, 2016, 56, 541-590.	5.4	144
130	Lack of anti-inflammatory effect of coenzyme Q10 supplementation in the liver of rodents after lipopolysaccharide challenge. Clinical Nutrition Experimental, 2015, 1, 10-18.	2.0	4
131	Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Scientific Reports, 2015, 5, 16643.	1.6	663
132	A dysbiotic subpopulation of alcohol-dependent subjects. Gut Microbes, 2015, 6, 388-391.	4.3	49
133	Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia, 2015, 58, 2206-2217.	2.9	220
134	Ezetimibe and simvastatin modulate gut microbiota and expression of genes related to cholesterol metabolism. Life Sciences, 2015, 132, 77-84.	2.0	43
135	Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nature Communications, 2015, 6, 6495.	5.8	144
136	Towards a more comprehensive concept for prebiotics. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 303-310.	8.2	679
137	Ability of the gut microbiota to produce PUFAâ€derived bacterial metabolites: Proof of concept in germâ€free versus conventionalized mice. Molecular Nutrition and Food Research, 2015, 59, 1603-1613.	1.5	48
138	Ganoderma lucidum, a new prebiotic agent to treat obesity?. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 553-554.	8.2	39
139	Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clinical Nutrition, 2015, 34, 501-507.	2.3	220
140	Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice. PLoS ONE, 2015, 10, e0131009.	1.1	109
141	Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals. PLoS ONE, 2014, 9, e90702.	1.1	163
142	<i>Saccharomyces boulardii</i> Administration Changes Gut Microbiota and Reduces Hepatic Steatosis, Low - Grade Inflammation, and Fat Mass in Obese and Type 2 Diabetic <i>db</i> /i> Mice. MBio, 2014, 5, e01011-14.	1.8	217
143	Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals?. Gut Microbes, 2014, 5, 74-82.	4.3	47
144	Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nature Communications, 2014, 5, 5648.	5.8	197

#	Article	IF	Citations
145	Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Beneficial Microbes, 2014, 5, 3-17.	1.0	241
146	Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME Journal, 2014, 8, 2116-2130.	4.4	491
147	Gut Microbial Metabolites of Polyunsaturated Fatty Acids Correlate with Specific Fecal Bacteria and Serum Markers of Metabolic Syndrome in Obese Women. Lipids, 2014, 49, 397-402.	0.7	63
148	Positive interaction between prebiotics and thiazolidinedione treatment on adiposity in dietâ€induced obese mice. Obesity, 2014, 22, 1653-1661.	1.5	9
149	The Human Gut Microbiome and Its Role in Obesity and the Metabolic Syndrome. , 2014, , 71-105.		4
150	Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4485-93.	3 . 3	652
151	Modulation of the Gut Microbiota by Nutrients with Prebiotic and Probiotic Properties. Advances in Nutrition, 2014, 5, 624S-633S.	2.9	92
152	Genes and nutrition, is personalised nutrition the next realistic step. Archives of Public Health, 2014, 72, .	1.0	0
153	Role of Inflammatory Pathways, Blood Mononuclear Cells, and Gut-Derived Bacterial Products in Alcohol Dependence. Biological Psychiatry, 2014, 76, 725-733.	0.7	163
154	Role of the Lower and Upper Intestine in the Production and Absorption of Gut Microbiota-Derived PUFA Metabolites. PLoS ONE, 2014, 9, e87560.	1.1	67
155	Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. British Journal of Nutrition, 2013, 109, 802-809.	1.2	197
156	Evaluation of the relationship between GPR43 and adiposity in human. Nutrition and Metabolism, 2013, $10,11.$	1.3	40
157	Endurance training in mice increases the unfolded protein response induced by a high-fat diet. Journal of Physiology and Biochemistry, 2013, 69, 215-225.	1.3	36
158	Microbial Modulation of Energy Availability in the Colon Regulates Intestinal Transit. Cell Host and Microbe, 2013, 14, 582-590.	5.1	306
159	Dietary supplementation with <i>Agaricus blazei</i> murill extract prevents dietâ€induced obesity and insulin resistance in rats. Obesity, 2013, 21, 553-561.	1.5	16
160	Prebiotic approach alleviates hepatic steatosis: Implication of fatty acid oxidative and cholesterol synthesis pathways. Molecular Nutrition and Food Research, 2013, 57, 347-359.	1.5	90
161	Muscle wasting: The gut microbiota as a new therapeutic target?. International Journal of Biochemistry and Cell Biology, 2013, 45, 2186-2190.	1.2	143
162	GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends in Pharmacological Sciences, 2013, 34, 226-232.	4.0	172

#	Article	IF	Citations
163	Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 2013, 62, 1112-1121.	6.1	632
164	Cross-talk between <i>Akkermansia muciniphila</i> and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9066-9071.	3.3	3,474
165	Implication of fermentable carbohydrates targeting the gut microbiota on conjugated linoleic acid production in high-fat-fed mice. British Journal of Nutrition, 2013, 110, 998-1011.	1.2	40
166	Gut microbiota and metabolic disorders: how prebiotic can work?. British Journal of Nutrition, 2013, 109, S81-S85.	1.2	148
167	Curcuma longa Extract Associated with White Pepper Lessens High Fat Diet-Induced Inflammation in Subcutaneous Adipose Tissue. PLoS ONE, 2013, 8, e81252.	1.1	44
168	Mapping of oxygen by imaging lipids relaxation enhancement: A potential sensitive endogenous MRI contrast to map variations in tissue oxygenation. Magnetic Resonance in Medicine, 2013, 70, 732-744.	1.9	41
169	Chronic Endocannabinoid System Stimulation Induces Muscle Macrophage and Lipid Accumulation in Type 2 Diabetic Mice Independently of Metabolic Endotoxaemia. PLoS ONE, 2013, 8, e55963.	1.1	34
170	Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutrition and Diabetes, 2012, 2, e28-e28.	1.5	184
171	Restoring Specific Lactobacilli Levels Decreases Inflammation and Muscle Atrophy Markers in an Acute Leukemia Mouse Model. PLoS ONE, 2012, 7, e37971.	1.1	186
172	Is there a place for coenzyme Q in the management of metabolic disorders associated with obesity?. Nutrition Reviews, 2012, 70, 631-641.	2.6	20
173	Ripened Dairy Products Differentially Affect Hepatic Lipid Content and Adipose Tissue Oxidative Stress Markers in Obese and Type 2 Diabetic Mice. Journal of Agricultural and Food Chemistry, 2012, 60, 2063-2068.	2.4	24
174	Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. British Journal of Cancer, 2012, 107, 1337-1344.	2.9	238
175	Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages. Biochemical and Biophysical Research Communications, 2012, 420, 857-861.	1.0	47
176	Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects. Brain, Behavior, and Immunity, 2012, 26, 911-918.	2.0	237
177	Tetrahydro iso-Alpha Acids from Hops Improve Glucose Homeostasis and Reduce Body Weight Gain and Metabolic Endotoxemia in High-Fat Diet-Fed Mice. PLoS ONE, 2012, 7, e33858.	1.1	61
178	The Loss of Metabolic Control on Alcohol Drinking in Heavy Drinking Alcohol-Dependent Subjects. PLoS ONE, 2012, 7, e38682.	1.1	58
179	Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin–glucan fiber improves host metabolic alterations induced by high-fat diet in mice. Journal of Nutritional Biochemistry, 2012, 23, 51-59.	1.9	215
180	Jejunum Inflammation in Obese and Diabetic Mice Impairs Enteric Glucose Detection and Modifies Nitric Oxide Release in the Hypothalamus. Antioxidants and Redox Signaling, 2011, 14, 415-423.	2.5	39

#	Article	IF	CITATIONS
181	Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nature Reviews Endocrinology, 2011, 7, 639-646.	4.3	653
182	Lipides et inflammation postprandialeÂ: impact du microbiote intestinal. Cahiers De Nutrition Et De Dietetique, 2011, 46, 230-233.	0.2	0
183	Probiotic and prebiotic claims in Europe: seeking a clear roadmap. British Journal of Nutrition, 2011, 106, 1765-1767.	1.2	23
184	Will Isomalto-Oligosaccharides, a Well-Established Functional Food in Asia, Break through the European and American Market? The Status of Knowledge on these Prebiotics. Critical Reviews in Food Science and Nutrition, 2011, 51, 394-409.	5.4	123
185	The gut microbiome as therapeutic target. , 2011, 130, 202-212.		299
186	Interaction Between Obesity and the Gut Microbiota: Relevance in Nutrition. Annual Review of Nutrition, $2011, 31, 15-31$.	4.3	358
187	Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice. Diabetes, 2011, 60, 2775-2786.	0.3	881
188	Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPAR \hat{I}^3 -related adipogenesis in the white adipose tissue of high-fat diet-fed mice. Journal of Nutritional Biochemistry, 2011, 22, 712-722.	1.9	237
189	Gut Microbiota and the Pathogenesis of Insulin Resistance. Current Diabetes Reports, 2011, 11, 154-159.	1.7	97
190	Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microbial Cell Factories, 2011, 10, S10.	1.9	172
191	Involvement of gut microbial fermentation in the metabolic alterations occurring in n-3 polyunsaturated fatty acids-depleted mice. Nutrition and Metabolism, 2011, 8, 44.	1.3	15
192	Benefits of bariatric surgery: an issue of microbial-host metabolism interactions?. Gut, 2011, 60, 1166-1167.	6.1	11
193	Altered Gut Microbiota and Endocannabinoid System Tone in Obese and Diabetic Leptin-Resistant Mice: Impact on Apelin Regulation in Adipose Tissue. Frontiers in Microbiology, 2011, 2, 149.	1.5	267
194	Initial Dietary and Microbiological Environments Deviate in Normalâ€weight Compared to Overweight Children at 10 Years of Age. Journal of Pediatric Gastroenterology and Nutrition, 2011, 52, 90-95.	0.9	100
195	Increasing endogenous 2â€arachidonoylglycerol levels counteracts colitis and related systemic inflammation. FASEB Journal, 2011, 25, 2711-2721.	0.2	177
196	Central Apelin Controls Glucose Homeostasis (i) via (li) a Nitric Oxide-Dependent Pathway in Mice. Antioxidants and Redox Signaling, 2011, 15, 1477-1496.	2.5	66
197	Nicotinamide enhances apoptosis of G(M)-CSF-treated neutrophils and attenuates endotoxin-induced airway inflammation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L354-L361.	1.3	14
198	Prebiotic Effects of Wheat Arabinoxylan Related to the Increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in Diet-Induced Obese Mice. PLoS ONE, 2011, 6, e20944.	1.1	383

#	Article	IF	Citations
199	Hepatic n-3 Polyunsaturated Fatty Acid Depletion Promotes Steatosis and Insulin Resistance in Mice: Genomic Analysis of Cellular Targets. PLoS ONE, 2011, 6, e23365.	1.1	83
200	Potential interest of gut microbial changes induced by non-digestible carbohydrates of wheat in the management of obesity and related disorders. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 722-728.	1.3	50
201	Dietary prebiotics: current status and new definition. Food Science and Technology Bulletin, 2010, 7, 1-19.	0.5	432
202	Gastrointestinal targets of appetite regulation in humans. Obesity Reviews, 2010, 11, 234-250.	3.1	129
203	Changes in Intestinal Bifidobacteria Levels Are Associated with the Inflammatory Response in Magnesium-Deficient Mice. Journal of Nutrition, 2010, 140, 509-514.	1.3	83
204	Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 2010, 104, S1-S63.	1.2	1,745
205	The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E695-E705.	1.8	134
206	Current level of consensus on probiotic science-Report of an expert meeting- London, 23 November 2009. Gut Microbes, 2010, 1, 436-439.	4.3	89
207	The endocannabinoid system links gut microbiota to adipogenesis. Molecular Systems Biology, 2010, 6, 392.	3.2	547
208	Nutritional modulation of gut microbiota in the context of obesity and insulin resistance: Potential interest of prebiotics. International Dairy Journal, 2010, 20, 277-280.	1.5	41
209	Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. American Journal of Clinical Nutrition, 2009, 90, 1236-1243.	2.2	615
210	Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 2009, 58, 1091-1103.	6.1	2,061
211	Lipid peroxidation is not a prerequisite for the development of obesity and diabetes in high-fat-fed mice. British Journal of Nutrition, 2009, 102, 462-469.	1.2	27
212	The Role of the Gut Microbiota in Energy Metabolism and Metabolic Disease. Current Pharmaceutical Design, 2009, 15, 1546-1558.	0.9	775
213	Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochemical Pharmacology, 2009, 78, 1391-1400.	2.0	145
214	No causal link between obesity and probiotics. Nature Reviews Microbiology, 2009, 7, 901-901.	13.6	48
215	Summary and general conclusions/outcomes on the role and fate of sugars in human nutrition and health. Obesity Reviews, 2009, 10, 55-58.	3.1	18
216	Assessment of liver phagocytic activity using EPR spectrometry and imaging. Magnetic Resonance Imaging, 2009, 27, 565-569.	1.0	6

#	Article	IF	Citations
217	Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Current Opinion in Pharmacology, 2009, 9, 737-743.	1.7	325
218	Critical role of Kupffer cells in the management of diet-induced diabetes and obesity. Biochemical and Biophysical Research Communications, 2009, 385, 351-356.	1.0	91
219	Dietary supplementation with chitosan derived from mushrooms changes adipocytokine profile in diet-induced obese mice, a phenomenon linked to its lipid-lowering action. International Immunopharmacology, 2009, 9, 767-773.	1.7	78
220	Modulation nutritionnelle de la flore intestinaleÂ: une nouvelle approche diététique dans la prise en charge de l'obésitéÂ?. Cahiers De Nutrition Et De Dietetique, 2009, 44, 42-46.	0.2	0
221	Hepatic steatosis in n-3 fatty acid depleted mice: focus on metabolic alterations related to tissue fatty acid composition. BMC Physiology, 2008, 8, 21.	3.6	42
222	Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Cto. and <i>Dasylirion </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological effects of dietary fructans extracted from <i>Agave tequilana </i> Physiological extracted fructans extracted fructan	1.2	119
223	Role of Central Nervous System Glucagon-Like Peptide-1 Receptors in Enteric Glucose Sensing. Diabetes, 2008, 57, 2603-2612.	0.3	116
224	Response to "Comment on: Dietary supplementation with laminarin, a fermentable marine \hat{l}^2 (1-3) glucan, protects against hepatotoxicity induced by LPS in rat by modulating immune response in the hepatic tissue". International Immunopharmacology, 2008, 8, 516-517.	1.7	2
225	Immunomodulatory properties of two wheat bran fractions – aleurone-enriched and crude fractions – in obese mice fed a high fat diet. International Immunopharmacology, 2008, 8, 1423-1432.	1.7	27
226	Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathologie Et Biologie, 2008, 56, 305-309.	2.2	210
227	Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes, 2008, 57, 1470-1481.	0.3	3,897
228	Prebiotics and Lipid Metabolism. , 2008, , 201-218.		4
229	Inulin and Oligofructose. Nutrition Today, 2008, 43, 54-59.	0.6	12
230	SREBP-1 regulates the expression of heme oxygenase 1 and the phosphatidylinositol-3 kinase regulatory subunit p55 \hat{l}^3 . Journal of Lipid Research, 2007, 48, 1628-1636.	2.0	48
231	Modulation of Glucagon-like Peptide 1 and Energy Metabolism by Inulin and Oligofructose: Experimental Data. Journal of Nutrition, 2007, 137, 2547S-2551S.	1.3	163
232	Gut microflora as a target for energy and metabolic homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 729-734.	1.3	270
233	Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. British Journal of Nutrition, 2007, 98, 32-37.	1.2	221
234	Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes, 2007, 56, 1761-1772.	0.3	4,964

#	Article	IF	CITATIONS
235	GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion. Molecular and Cellular Endocrinology, 2007, 276, 18-23.	1.6	86
236	Dietary supplementation with laminarin, a fermentable marine \hat{l}^2 ($1\hat{a}$ €"3) glucan, protects against hepatotoxicity induced by LPS in rat by modulating immune response in the hepatic tissue. International Immunopharmacology, 2007, 7, 1497-1506.	1.7	94
237	Comparison of glycemic index of spelt and wheat bread in human volunteers. Food Chemistry, 2007, 100, 1265-1271.	4.2	33
238	Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 2007, 50, 2374-2383.	2.9	1,507
239	Role of apoptotic signaling pathway in metabolic disturbances occurring in liver tissue after cryopreservation: Study on rat precision-cut liver slices. Life Sciences, 2006, 78, 1570-1577.	2.0	17
240	Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice. Life Sciences, 2006, 79, 1007-1013.	2.0	99
241	Oligofructose promotes satiety in healthy human: a pilot study. European Journal of Clinical Nutrition, 2006, 60, 567-572.	1.3	334
242	Peroxisome Proliferator-Activated Receptor-α-Null Mice Have Increased White Adipose Tissue Glucose Utilization, GLUT4, and Fat Mass: Role in Liver and Brain. Endocrinology, 2006, 147, 4067-4078.	1.4	73
243	Improvement of Glucose Tolerance and Hepatic Insulin Sensitivity by Oligofructose Requires a Functional Glucagon-Like Peptide 1 Receptor. Diabetes, 2006, 55, 1484-1490.	0.3	365
244	Effect on Components of the Intestinal Microflora and Plasma Neuropeptide Levels of Feeding Lactobacillus delbrueckii, Bifidobacterium lactis, and Inulin to Adult and Elderly Rats. Applied and Environmental Microbiology, 2006, 72, 6533-6538.	1.4	55
245	A place for dietary fibre in the management of the metabolic syndrome. Current Opinion in Clinical Nutrition and Metabolic Care, 2005, 8, 636-640.	1.3	134
246	Impact of inulin and oligofructose on gastrointestinal peptides. British Journal of Nutrition, 2005, 93, S157-S161.	1.2	248
247	Oligofructose Promotes Satiety in Rats Fed a Highâ∈Fat Diet: Involvement of Glucagonâ∈Like Peptideâ∈1. Obesity, 2005, 13, 1000-1007.	4.0	326
248	Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: results of a pilot study. European Journal of Clinical Nutrition, 2005, 59, 723-726.	1.3	172
249	Insight into the involvement of Kupffer cell-derived mediators in the hepatoprotective effect of glycine upon inflammation: study on rat precision-cut liver slices. Inflammation Research, 2005, 54, 106-112.	1.6	12
250	Involvement of endogenous glucagon-like peptide-1(7–36) amide on glycaemia-lowering effect of oligofructose in streptozotocin-treated rats. Journal of Endocrinology, 2005, 185, 457-465.	1.2	164
251	Spelt (Triticum aestivumssp.spelta) as a Source of Breadmaking Flours and Bran Naturally Enriched in Oleic Acid and Minerals but Not Phytic Acid. Journal of Agricultural and Food Chemistry, 2005, 53, 2751-2759.	2.4	92
252	Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. Journal of Clinical Investigation, 2005, 115, 3554-3563.	3.9	263

#	Article	IF	CITATIONS
253	Kupffer Cell Activity Is Involved in the Hepatoprotective Effect of Dietary Oligofructose in Rats with Endotoxic Shock. Journal of Nutrition, 2004, 134, 1124-1129.	1.3	24
254	Potential modulation of plasma ghrelin and glucagon-like peptide-1 by anorexigenic cannabinoid compounds, SR141716A (rimonabant) and oleoylethanolamide. British Journal of Nutrition, 2004, 92, 757-761.	1.2	154
255	PASSCLAIM1?Body weight regulation, insulin sensitivity and diabetes risk. European Journal of Nutrition, 2004, 43, II7-II46.	1.8	29
256	Precision-cut liver slices in culture as a tool to assess the physiological involvement of Kupffer cells in hepatic metabolism. Comparative Hepatology, 2004, 3, S45.	0.9	16
257	Kupffer cell-derived prostaglandin E2 is involved in regulation of lipid synthesis in rat liver tissue. Cell Biochemistry and Function, 2004, 22, 327-332.	1.4	15
258	Spelt (Triticum speltaL.) and Winter Wheat (Triticum aestivumL.) Wholemeals Have Similar Sterol Profiles, As Determined by Quantitative Liquid Chromatography and Mass Spectrometry Analysis. Journal of Agricultural and Food Chemistry, 2004, 52, 4802-4807.	2.4	48
259	Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like) Tj ETQq $1\ 1$	0,784314 1.2	rgBT /Overl
260	Phytosterol analysis and characterization in spelt (Triticum aestivum ssp. spelta L.) and wheat (T.) Tj ETQq0 0 0 rg	BT /Overlo	ck 10 Tf 50
261	Oligosaccharides: state of the art. Proceedings of the Nutrition Society, 2003, 62, 177-182.	0.4	163
262	Prebiotics: actual and potential effects in inflammatory and malignant colonic diseases. Current Opinion in Clinical Nutrition and Metabolic Care, 2003, 6, 581-586.	1.3	25
263	Cryopreservation of Rat Precision-cut Liver Slices is Associated with Major Metabolic Stress and Ionic Perturbations. Cellular Physiology and Biochemistry, 2003, 13, 103-112.	1.1	8
264	Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. British Journal of Nutrition, 2002, 87, S255-S259.	1.2	157
265	Prebiotics and lipid metabolism. Current Opinion in Lipidology, 2002, 13, 61-67.	1.2	168
266	Inhibition of Kupffer cell activity induces hepatic triglyceride synthesis in fasted rats, independent of lipopolysaccharide challenge. Journal of Hepatology, 2002, 36, 466-473.	1.8	23
267	Dietary Fructans, but Not Cellulose, Decrease Triglyceride Accumulation in the Liver of Obese Zucker fa/fa Rats. Journal of Nutrition, 2002, 132, 967-973.	1.3	144
268	Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. British Journal of Nutrition, 2002, 87, 255-259.	1.2	59
269	Cryopreservation of rat precision-cut liver slices by ultrarapid freezing. Life Sciences, 2001, 68, 2391-2403.	2.0	34
270	Effects of fructans-type prebiotics on lipid metabolism. American Journal of Clinical Nutrition, 2001, 73, 456s-458s.	2.2	171

#	Article	IF	Citations
271	Dietary Fructans Modulate Polyamine Concentration in the Cecum of Rats. Journal of Nutrition, 2000, 130, 2456-2460.	1.3	46
272	Dietary Oligofructose Lessens Hepatic Steatosis, but Does Not Prevent Hypertriglyceridemia in Obese Zucker Rats. Journal of Nutrition, 2000, 130, 1314-1319.	1.3	141
273	Are Kupffer cells involved in the metabolic adaptation of the liver to dietary carbohydrates given after fasting?. Biochimica Et Biophysica Acta - General Subjects, 2000, 1475, 238-244.	1.1	7
274	Biochemical Basis of Oligofructose-Induced Hypolipidemia in Animal Models. Journal of Nutrition, 1999, 129, 1467S-1470S.	1.3	101
275	Actions of Non-Digestible Carbohydrates on Blood Lipids in Humans and Animals. , 1999, , 213-231.		9
276	Analogues and homologues of N-palmitoylethanolamide, a putative endogenous CB2 cannabinoid, as potential ligands for the cannabinoid receptors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1440, 266-274.	1.2	95
277	Modulation of paracetamol metabolism by Kupffer cells: A study on rat liver slices. Life Sciences, 1999, 65, 2851-2859.	2.0	29
278	Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). British Journal of Nutrition, 1999, 81, 121-132.	1.2	417
279	The hypolipidaemic effect of inulin: when animal studies help to approach the human problem. British Journal of Nutrition, 1999, 82, 3-4.	1.2	19
280	Oligofructose modulates lipid metabolism alterations induced by a fat-rich diet in rats., 1998, 18, 47-53.		77
281	Lack of Protective Effect of Menhaden Oil Supplementation on Rat Liver Steatosis induced by a Carbohydrate-rich Diet. Food and Chemical Toxicology, 1998, 36, 555-561.	1.8	7
282	Reduction in hepatic cytochrome P-450 is correlated to the degree of liver fat content in animal models of steatosis in the absence of inflammation. Journal of Hepatology, 1998, 28, 410-416.	1.8	58
283	DIETARY FRUCTANS. Annual Review of Nutrition, 1998, 18, 117-143.	4.3	345
284	Insulin, Glucagon-like Peptide 1, Glucose-Dependent Insulinotropic Polypeptide and Insulin-Like Growth Factor I as Putative Mediators of the Hypolipidemic Effect of Oligofructose in Rats. Journal of Nutrition, 1998, 128, 1099-1103.	1.3	114
285	Effect of non-digestible fermentable carbohydrates on hepatic fatty acid metabolism. Biochemical Society Transactions, 1998, 26, 228-231.	1.6	47
286	Accumulation of Manganese in the Brain of Mice after Intravenous Injection of Manganese-Based Contrast Agents. Chemical Research in Toxicology, 1997, 10, 360-363.	1.7	34
287	A new model of acute liver steatosis induced in rats by fasting followed by refeeding a high carbohydrate-fat free diet. Biochemical and morphological analysis Journal of Hepatology, 1997, 26, 880-885.	1.8	51
288	Growth inhibition of transplantable mouse tumors by non-digestible carbohydrates., 1997, 71, 1109-1112.		58

#	Article	IF	CITATIONS
289	Growth inhibition of transplantable mouse tumors by non-digestible carbohydrates., 1997, 71, 1109.		4
290	Dietary oligofructose modifies the impact of fructose on hepatic triacylglycerol metabolism. Metabolism: Clinical and Experimental, 1996, 45, 1547-1550.	1.5	112
291	Involvement of lipogenesis in the lower VLDL secretion induced by oligofructose in rats. British Journal of Nutrition, 1996, 76, 881-890.	1.2	168
292	Determination of digestible energy values and fermentabilities of dietary fibre supplements: a European interlaboratory study in vivo. British Journal of Nutrition, 1995, 74, 289-302.	1.2	38
293	DNase I hypersensitivity sites and nuclear protein binding on the fatty acid synthase gene: identification of an element with properties similar to known glucose-responsive elements. Biochemical Journal, 1995, 308, 521-527.	1.7	37
294	Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids, 1995, 30, 163-167.	0.7	252
295	Protective effect of dietary fructo-oligosaccharide in young rats against exocrine pancreas atrophy induced by high fructose and partial copper deficiency. Food and Chemical Toxicology, 1995, 33, 631-639.	1.8	7
296	Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sciences, 1995, 57, 1579-1587.	2.0	207
297	Modifications of liver bile acids pool during modulation of rat hepatocarcinogenesis by phenobarbital and nafenopin. Archives of Toxicology, 1994, 68, 394-397.	1.9	6
298	Changes in bile acids metabolism during rat hepatocarcinogenesis: Causative or unrelated?. Life Sciences, 1994, 54, 1935-1945.	2.0	1
299	Dietary fructooligosaccharides modify lipid metabolism in rats. American Journal of Clinical Nutrition, 1993, 57, 820S.	2.2	92
300	Comparative hepatotoxicity of cholic acid, deoxycholic acid and lithocholic acid in the rat: in vivo and in vitro studies. Toxicology Letters, 1992, 61, 291-304.	0.4	94
301	Analysis of antioxidant defense systems during rat heptacarcinogenesis. Carcinogenesis, 1988, 9, 2009-2013.	1.3	28
302	Dietary Supplementation With Agaricus Blazei Murill Extract Prevents Diet-Induced Obesity and Insulin Resistance in Rats. Obesity, 0, , .	1.5	1
303	Prebiotics and Lipid Metabolism. , 0, , 183-192.		7
304	The Gut Microbiota Drives Metabolic Disorders Which Compromise Sociability in Alcoholic Patients. SSRN Electronic Journal, 0, , .	0.4	0
305	A Single Dose of Oral Metformin Reduces the Post-Prandial Glucose Response Through a Transient Modulation of Apical Sodium-Glucose Co-Transporter. SSRN Electronic Journal, 0, , .	0.4	0