Seth J Zost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/819336/publications.pdf

Version: 2024-02-01

28 6,587 18 26 papers citations h-index g-index

45 45 45 10395
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584, 443-449.	13.7	956
2	Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host and Microbe, 2021, 29, 44-57.e9.	5.1	937
3	Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27, 717-726.	15.2	838
4	An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nature Medicine, 2022, 28, 490-495.	15.2	577
5	Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nature Medicine, 2020, 26, 1422-1427.	15.2	450
6	Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12578-12583.	3.3	437
7	Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell, 2021, 184, 2316-2331.e15.	13.5	321
8	Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell, 2021, 184, 1804-1820.e16.	13.5	297
9	Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature Microbiology, 2021, 6, 1233-1244.	5.9	237
10	In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature, 2021, 596, 103-108.	13.7	222
11	Potential antigenic explanation for atypical H1N1 infections among middle-aged adults during the 2013–2014 influenza season. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15798-15803.	3.3	203
12	Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nature Communications, 2018, 9, 3361.	5 . 8	189
13	A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine. PLoS Pathogens, 2017, 13, e1006682.	2.1	188
14	Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin. ELife, $2019,8,.$	2.8	80
15	Human Influenza A Virus Hemagglutinin Glycan Evolution Follows a Temporal Pattern to a Glycan Limit. MBio, 2019, 10, .	1.8	74
16	Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens. Journal of Infectious Diseases, 2019, 219, S38-S45.	1.9	67
17	Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated individuals. Cell Reports, 2021, 36, 109604.	2.9	67
18	Comparison of Human H3N2 Antibody Responses Elicited by Egg-Based, Cell-Based, and Recombinant Protein–Based Influenza Vaccines During the 2017–2018 Season. Clinical Infectious Diseases, 2020, 71, 1447-1453.	2.9	27

#	Article	IF	CITATION
19	Identification of Antibodies Targeting the H3N2 Hemagglutinin Receptor Binding Site following Vaccination of Humans. Cell Reports, 2019, 29, 4460-4470.e8.	2.9	22
20	Pan-ebolavirus protective therapy by two multifunctional human antibodies. Cell, 2021, 184, 5593-5607.e18.	13.5	21
21	Canonical features of human antibodies recognizing the influenza hemagglutinin trimer interface. Journal of Clinical Investigation, 2021, 131, .	3.9	20
22	Potent neutralization of SARS-CoV-2 variants of concern by an antibody with an uncommon genetic signature and structural mode of spike recognition. Cell Reports, 2021, 37, 109784.	2.9	20
23	An Egg-Derived Sulfated <i>N</i> -Acetyllactosamine Glycan Is an Antigenic Decoy of Influenza Virus Vaccines. MBio, 2021, 12, e0083821.	1.8	8
24	Real-time cell analysis: A high-throughput approach for testing SARS-CoV-2 antibody neutralization and escape. STAR Protocols, 2022, 3, 101387.	0.5	8
25	Standardized two-step testing of antibody activity in COVID-19 convalescent plasma. IScience, 2022, 25, 103602.	1.9	6
26	The Crossroads of Glycoscience, Infection, and Immunology. Frontiers in Microbiology, 2021, 12, 731008.	1.5	3
27	Standardized Two-Step Testing of Antibody Activity in COVID-19 Convalescent Plasma. SSRN Electronic Journal, 0, , .	0.4	2
28	Identification of Antibodies Targeting the H3N2 Hemagglutinin Receptor Binding Site Following Vaccination of Humans. SSRN Electronic Journal, 0, , .	0.4	1