
Amy V Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8193230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoactivated Ru chemical vapor deposition using (η3-allyl)Ru(CO)3X (X = Cl, Br, I): From molecular adsorption to Ru thin film deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 023404.	2.1	1
2	Photochemistry of (η ⁴ -diene)Ru(CO) ₃ Complexes as Precursor Candidates for Photoassisted Chemical Vapor Deposition. Organometallics, 2022, 41, 761-775.	2.3	2
3	Highâ€resolution peak analysis in TOF SIMS data. Surface and Interface Analysis, 2021, 53, 53-67.	1.8	1
4	Cuprous or cupric? How substrate polarity can select for different phases of copper sulfide films in chemical bath deposition. Journal of Chemical Physics, 2021, 154, 144704.	3.0	0
5	6â€Phenylhexyl silane derivatized, sputtered silicon solid phase microextraction fiber for the partsâ€perâ€trillion detection of polyaromatic hydrocarbons in water and baby formula. Journal of Separation Science, 2021, 44, 2824-2836.	2.5	3
6	Modulating the Electronic Properties of Au–MoS ₂ Interfaces Using Functionalized Self-Assembled Monolayers. Langmuir, 2020, 36, 682-688.	3.5	7
7	Photochemistry of 1,5-Cyclooctadiene Platinum Complexes for Photoassisted Chemical Vapor Deposition. Organometallics, 2020, 39, 4565-4574.	2.3	2
8	Low temperature platinum chemical vapor deposition on functionalized self-assembled monolayers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	2
9	Chemical Bath Deposition of Copper Sulfide on Functionalized SAMs: An Unusual Selectivity Mechanism. Langmuir, 2020, 36, 3119-3126.	3.5	4
10	Preface to special collection: 30 years of the Nellie Yeoh Whetten Award—celebrating the women of the AVS. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 061601.	2.1	0
11	Photochemistry of (η ³ -allyl)Ru(CO) ₃ X Precursors for Photoassisted Chemical Vapor Deposition. Organometallics, 2019, 38, 4363-4370.	2.3	4
12	Polytype control of MoS2 using chemical bath deposition. Journal of Chemical Physics, 2019, 150, 174701.	3.0	5
13	Law and Disorder: Special Stacking Units—Building the Intergrowth Ce ₆ Co ₅ Ge ₁₆ . Inorganic Chemistry, 2019, 58, 6037-6043.	4.0	11
14	Femtosecond laser desorption ionization mass spectrometry imaging and multivariate analysis of lipids in pancreatic tissue. Biointerphases, 2018, 13, 03B416.	1.6	9
15	Toward understanding weak matrix effects in TOF SIMS. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 03F127.	1.2	3
16	Effect of Ethanolamines on the Electroless Deposition of Copper on Functionalized Organic Surfaces. Langmuir, 2018, 34, 4142-4149.	3.5	4
17	(Invited) Using Surface Chemistry to Direct the Deposition of Nano-objects for Electronics. ECS Transactions, 2018, 86, 89-101.	0.5	3
18	(Invited) Using Surface Chemistry to Direct the Deposition of Nano-objects for Electronics. ECS Meeting Abstracts, 2018, , .	0.0	0

#	Article	IF	CITATIONS
19	Plasma polymerization of poly(3,4-ethylenedioxyethene) films: The influence of plasma gas phase chemistry. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	8
20	Facile synthesis of stable, water soluble, dendron-coated gold nanoparticles. Nanoscale, 2017, 9, 3128-3132.	5.6	19
21	Photochemical CVD of Ru on functionalized self-assembled monolayers from organometallic precursors. Journal of Chemical Physics, 2017, 146, 052816.	3.0	9
22	Role of the Reducing Agent in the Electroless Deposition of Copper on Functionalized SAMs. Langmuir, 2017, 33, 8663-8670.	3.5	9
23	New horizons in sputter depth profiling inorganics with giant gas cluster sources: Niobium oxide thin films. Surface and Interface Analysis, 2017, 49, 991-999.	1.8	10
24	Structure and Oxidation States of Giant Unit Cell Compound Dy 117+ x Fe 57– y Sn 112– z. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 2038-2044.	1.2	2
25	Materials Analysis Using Secondary Ion Mass Spectrometry: Challenges and Opportunities. Microscopy and Microanalysis, 2017, 23, 1042-1043.	0.4	1
26	Secondary Ion Mass Spectrometry. , 2017, , 44-49.		4
27	Application of visible-light photosensitization to form alkyl-radical-derived thin films on gold. Beilstein Journal of Nanotechnology, 2017, 8, 1863-1877.	2.8	1
28	Zinc oxide Chemical Bath Deposition on Functionalized organic thin films: Formation of nanorods, nanorockets and nanoflowers. Thin Solid Films, 2016, 606, 106-112.	1.8	9
29	Effects of protein species and surface physicochemical features on the deposition of nanoparticles onto protein-coated planar surfaces. RSC Advances, 2016, 6, 75491-75498.	3.6	3
30	Emergence of Magnetic States in Pr ₂ Fe _{4–<i>x</i>} Co _{<i>x</i>} Sb ₅ (1 < <i>x</i> < 2.5). Inorganic Chemistry, 2016, 55, 1946-1951.	4.0	4
31	From Nanowires to Nanopores: A Versatile Method for Electroless Deposition of Nanostructures on Micropatterned Organic Substrates. Langmuir, 2016, 32, 2668-2674.	3.5	7
32	Statistically rigorous analysis of imaging SIMS data in the presence of detector saturation. Surface and Interface Analysis, 2015, 47, 889-895.	1.8	6
33	Room Temperature Atomic Layer-like Deposition of ZnO on Functionalized Self-Assembled Monolayers. Journal of Physical Chemistry C, 2015, 119, 1091-1100.	3.1	16
34	Chemical Bath Deposition of ZnO on Functionalized Self-Assembled Monolayers: Selective Deposition and Control of Deposit Morphology. Langmuir, 2015, 31, 1421-1428.	3.5	22
35	Room temperature atomic layerlike deposition of ZnS on organic thin films: Role of substrate functional groups and precursors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	4
36	Morphological Control of PbS Grown on Functionalized Self-Assembled Monolayers by Chemical Bath Deposition. Langmuir, 2014, 30, 6954-6962.	3.5	10

#	Article	IF	CITATIONS
37	Partially fluorinated oxo-alkoxide tungsten(<scp>vi</scp>) complexes as precursors for deposition of WO _x nanomaterials. Dalton Transactions, 2014, 43, 9226-9233.	3.3	15
38	lonic liquid matrices for improved detection of proteins and polymers in timeâ€ofâ€flight secondary ion mass spectrometry. Surface and Interface Analysis, 2014, 46, 15-17.	1.8	3
39	On including nonlinearity in multivariate analysis of imaging SIMS data. Surface and Interface Analysis, 2014, 46, 221-224.	1.8	6
40	Optimized analysis of imaging timeâ€ofâ€flight SIMS data. Surface and Interface Analysis, 2013, 45, 479-482.	1.8	6
41	Towards the Rational Design of Ionic Liquid Matrices for Secondary Ion Mass Spectrometry: Role of the American Society for Mass Spectrometry, 2013, 24, 1288-1295.	2.8	11
42	Interfacial graphene growth in the Ni/SiO ₂ system using pulsed laser deposition. Applied Physics Letters, 2013, 103, 134102.	3.3	20
43	Ionic Liquid Matrix-Enhanced Secondary Ion Mass Spectrometry: The Role of Proton Transfer. Journal of the American Society for Mass Spectrometry, 2013, 24, 348-355.	2.8	24
44	Toward a new world of molecular devices: Making metallic contacts to molecules. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 050816.	2.1	21
45	UV Photoactivated Room Temperature CVD of Aluminum on Functionalized Self-Assembled Monolayers Adsorbed on Au. Langmuir, 2012, 28, 16909-16916.	3.5	15
46	Synthesis of WN(NMe ₂) ₃ as a Precursor for the Deposition of WN <i>_x</i> Nanospheres. European Journal of Inorganic Chemistry, 2012, 2012, 4579-4584.	2.0	22
47	Site-Selectively Functionalizing Microelectrode Arrays: The Use of Cu(I)-Catalysts. Langmuir, 2011, 27, 11199-11205.	3.5	29
48	Selective Electroless Deposition of Copper on Organic Thin Films with Improved Morphology. Langmuir, 2011, 27, 13022-13028.	3.5	23
49	Synthesis of Nickel Nanowires via Electroless Nanowire Deposition on Micropatterned Substrates. Langmuir, 2011, 27, 11292-11295.	3.5	17
50	Investigation of the Mechanism of Nickel Electroless Deposition on Functionalized Self-Assembled Monolayers. Langmuir, 2011, 27, 6932-6939.	3.5	21
51	Towards Molecular Electronics: Solution-Based Methods for Selective Deposition of Metals and Semiconductors. , 2011, , .		1
52	Selective formation of monodisperse CdSe nanoparticles on functionalized self-assembled monolayers using chemical bath deposition. Electrochimica Acta, 2010, 55, 8126-8134.	5.2	13
53	Matrix-Enhanced Secondary Ion Mass Spectrometry (ME SIMS) Using Room Temperature Ionic Liquid Matrices. Analytical Chemistry, 2010, 82, 4413-4419.	6.5	84
54	Electron Beam-Induced Damage of Alkanethiolate Self-Assembled Monolayers Adsorbed on GaAs (001): A Static SIMS Investigation. Journal of Physical Chemistry C, 2010, 114, 5400-5409.	3.1	20

#	Article	IF	CITATIONS
55	Comparison of Chemical Lithography Using Alkanethiolate Self-Assembled Monolayers on GaAs (001) and Au. Langmuir, 2010, 26, 4523-4528.	3.5	14
56	Electron-Beam-Induced Damage of Alkanethiolate Self-Assembled Monolayers (SAMs): Dependence on Monolayer Structure and Substrate Conductivity. Journal of Physical Chemistry C, 2010, 114, 9362-9369.	3.1	11
57	Building Robust and Reliable Molecular Constructs: Patterning, Metallic Contacts, and Layer-by-Layer Assembly. Langmuir, 2010, 26, 13778-13785.	3.5	23
58	Formation of Multilayer Ultrathin Assemblies Using Chemical Lithography. Langmuir, 2010, 26, 8441-8449.	3.5	12
59	Secondary Ion Mass Spectrometry. , 2010, , 2504-2510.		1
60	Characterization of gold contacts in GaAs-based molecular devices: Relating structure to electrical properties. Chemical Physics Letters, 2009, 472, 220-223.	2.6	9
61	Making Nanoflowerbeds: Reaction Pathways Involved in the Selective Chemical Bath Deposition of ZnS on Functionalized Alkanethiolate Self-Assembled Monolayers. ACS Nano, 2009, 3, 370-378.	14.6	31
62	Benzaldehyde-Functionalized Polymer Vesicles. ACS Nano, 2009, 3, 673-681.	14.6	66
63	Building addressable libraries: a site-selective click-reaction strategy for rapidly assembling mass spectrometry cleavable linkers. Chemical Communications, 2009, , 5573.	4.1	28
64	Time-of-flight secondary ion mass spectrometry, fluorescence microscopy and scanning electron microscopy: Combined tools for monitoring the process of patterning and layer-by-layer assembly of synthetic and biological materials. Colloids and Surfaces B: Biointerfaces, 2008, 65, 85-91.	5.0	14
65	An investigation of secondary ion yield enhancement using Bi _n ²⁺ (<i>n</i> =1,) Tj ETC	Qq1_1_0.78	4314 rgBT (17
66	The use of a detectable, mass-spectrometry-cleavable linker for quality control on an addressable microelectrode array. Electrochemistry Communications, 2008, 10, 973-976.	4.7	12
67	Room-temperature Chemical Vapor Deposition of Aluminum and Aluminum Oxides on Alkanethiolate Self-Assembled Monolayers. Journal of Physical Chemistry C, 2008, 112, 2091-2098.	3.1	18
68	Why Is SIMS Underused in Chemical and Biological Analysis? Challenges and Opportunities. Analytical Chemistry, 2008, 80, 8865-8870.	6.5	65
69	UV Photooxidation of a Homologous Series of <i>n</i> -Alkanethiolate Monolayers on GaAs(001):  A Static SIMS Investigation. Journal of Physical Chemistry C, 2008, 112, 797-805.	3.1	15
70	Molecular Self-Assembly at Bare Semiconductor Surfaces:  Investigation of the Chemical and Electronic Properties of the Alkanethiolateâ^'GaAs(001) Interface. Journal of Physical Chemistry C, 2007, 111, 4226-4234.	3.1	80
71	Dynamics of Reactive Metal Adsorption on Organic Thin Films. Journal of Physical Chemistry C, 2007, 111, 8543-8556.	3.1	23
72	Investigation of the Mechanism of Electroless Deposition of Copper on Functionalized Alkanethiolate Self-Assembled Monolayers Adsorbed on Gold. Langmuir, 2007, 23, 12577-12582.	3.5	25

#	Article	IF	CITATIONS
73	Dynamics of Interaction of Magnesium Atoms on Methoxy-Terminated Self-Assembled Monolayers:  An Example of a Reactive Metal with a Low Sticking Probability. Journal of Physical Chemistry C, 2007, 111, 765-772.	3.1	24
74	UV Photooxidation and Photopatterning of Alkanethiolate Self-Assembled Monolayers (SAMs) on GaAs (001). Langmuir, 2007, 23, 8876-8881.	3.5	26
75	Building Addressable Libraries:Â The Use of a Mass Spectrometry Cleavable Linker for Monitoring Reactions on a Microelectrode Array. Journal of the American Chemical Society, 2006, 128, 16020-16021.	13.7	21
76	Dependence of Patterned Binary Alkanethiolate Self-Assembled Monolayers on "UV-Photopatterning― Conditions and Evolution with Time, Terminal Group, and Methylene Chain Length. Langmuir, 2006, 22, 11420-11425.	3.5	33
77	Dynamics of the Interaction of Vapor-Deposited Copper with Alkanethiolate Monolayers:Â Bond Insertion, Complexation, and Penetration Pathways. Journal of Physical Chemistry B, 2006, 110, 12543-12554.	2.6	41
78	Toward Molecular Electronic Circuitry:Â Selective Deposition of Metals on Patterned Self-Assembled Monolayer Surfaces. Journal of the American Chemical Society, 2005, 127, 12160-12161.	13.7	41
79	The Dynamics of Noble Metal Atom Penetration through Methoxy-Terminated Alkanethiolate Monolayers. Journal of the American Chemical Society, 2004, 126, 3954-3963.	13.7	163
80	Solvation of zero-valent metals in organic thin films. Chemical Physics Letters, 2003, 369, 615-620.	2.6	23
81	Prospects for imaging with TOF-SIMS using gold liquid metal ion sources. Applied Surface Science, 2003, 203-204, 198-200.	6.1	38
82	Bond Insertion, Complexation, and Penetration Pathways of Vapor-Deposited Aluminum Atoms with HO- and CH3O-Terminated Organic Monolayers. Journal of the American Chemical Society, 2002, 124, 5528-5541.	13.7	195