Pras Pathmanathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8191940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability. Bulletin of Mathematical Biology, 2022, 84, 39.	1.9	19
2	Design and execution of a verification, validation, and uncertainty quantification plan for a numerical model of left ventricular flow after LVAD implantation. PLoS Computational Biology, 2022, 18, e1010141.	3.2	7
3	Data-Driven Uncertainty Quantification for Cardiac Electrophysiological Models: Impact of Physiological Variability on Action Potential and Spiral Wave Dynamics. Frontiers in Physiology, 2020, 11, 585400.	2.8	15
4	The â€~Digital Twin' to enable the vision of precision cardiology. European Heart Journal, 2020, 41, 4556-4564.	2.2	319
5	Considering discrepancy when calibrating a mechanistic electrophysiology model. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190349.	3.4	46
6	Chaste: Cancer, Heart and Soft Tissue Environment. Journal of Open Source Software, 2020, 5, 1848.	4.6	58
7	Effect of Heart Structure on Ventricular Fibrillation in the Rabbit: A Simulation Study. Frontiers in Physiology, 2019, 10, 564.	2.8	8
8	Comprehensive Uncertainty Quantification and Sensitivity Analysis for Cardiac Action Potential Models. Frontiers in Physiology, 2019, 10, 721.	2.8	57
9	Credibility Evidence for Computational Patient Models Used in the Development of Physiological Closed-Loop Controlled Devices for Critical Care Medicine. Frontiers in Physiology, 2019, 10, 220.	2.8	32
10	Patient-Specific Cardiovascular Computational Modeling: Diversity of Personalization and Challenges. Journal of Cardiovascular Translational Research, 2018, 11, 80-88.	2.4	97
11	Advancing Regulatory Science With Computational Modeling for Medical Devices at the FDA's Office of Science and Engineering Laboratories. Frontiers in Medicine, 2018, 5, 241.	2.6	93
12	Validation and Trustworthiness of Multiscale Models of Cardiac Electrophysiology. Frontiers in Physiology, 2018, 9, 106.	2.8	43
13	A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup. PLoS Computational Biology, 2016, 12, e1005087.	3.2	38
14	Uncertainty and variability in computational and mathematical models of cardiac physiology. Journal of Physiology, 2016, 594, 6833-6847.	2.9	127
15	Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models?. Journal of Molecular and Cellular Cardiology, 2016, 96, 49-62.	1.9	113
16	Filament Dynamics during Simulated Ventricular Fibrillation in a High-Resolution Rabbit Heart. BioMed Research International, 2015, 2015, 1-14.	1.9	35
17	A high-resolution computational model of the deforming human heart. Biomechanics and Modeling in Mechanobiology, 2015, 14, 829-849.	2.8	46
18	Uncertainty quantification of fast sodium current steady-state inactivation for multi-scale models of cardiac electrophysiology. Progress in Biophysics and Molecular Biology, 2015, 117, 4-18.	2.9	55

PRAS PATHMANATHAN

#	Article	IF	CITATIONS
19	Quantitative Study of the Effect of Tissue Microstructure on Contraction in a Computational Model of Rat Left Ventricle. PLoS ONE, 2014, 9, e92792.	2.5	20
20	Verification of computational models of cardiac electroâ€physiology. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 525-544.	2.1	63
21	Modelling the Effect of Cap Junctions on Tissue-Level Cardiac Electrophysiology. Bulletin of Mathematical Biology, 2014, 76, 431-454.	1.9	13
22	Transmembrane Current Imaging in the Heart during Pacing and Fibrillation. Biophysical Journal, 2013, 105, 1710-1719.	0.5	1
23	Computational assessment of drugâ€induced effects on the electrocardiogram: from ion channel to body surface potentials. British Journal of Pharmacology, 2013, 168, 718-733.	5.4	98
24	Chaste: An Open Source C++ Library for Computational Physiology and Biology. PLoS Computational Biology, 2013, 9, e1002970.	3.2	375
25	Ensuring reliability of safety-critical clinical applications of computational cardiac models. Frontiers in Physiology, 2013, 4, 358.	2.8	43
26	Verification of cardiac tissue electrophysiology simulators using an <i>N</i> -version benchmark. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 4331-4351.	3.4	253
27	Stimulus Protocol Determines the Most Computationally Efficient Preconditioner for the Bidomain Equations. IEEE Transactions on Biomedical Engineering, 2010, 57, 2806-2815.	4.2	9
28	A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Progress in Biophysics and Molecular Biology, 2010, 102, 136-155.	2.9	71
29	A Numerical Method for Cardiac Mechanoelectric Simulations. Annals of Biomedical Engineering, 2009, 37, 860-873.	2.5	48
30	Chaste: A test-driven approach to software development for biological modelling. Computer Physics Communications, 2009, 180, 2452-2471.	7.5	207
31	Predicting Tumor Location by Modeling the Deformation of the Breast. IEEE Transactions on Biomedical Engineering, 2008, 55, 2471-2480.	4.2	77
32	Modelling the effect of gap junctions on tissue-level cardiac electrophysiology. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 92, 1-15.	0.8	1