
Florine E M Scholte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8191272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Addressing personal protective equipment (PPE) decontamination: Methylene blue and light inactivates severe acute respiratory coronavirus virus 2 (SARS-CoV-2) on N95 respirators and medical masks with maintenance of integrity and fit. Infection Control and Hospital Epidemiology, 2022, 43, 876-885.	1.8	19
2	Lassa Virus Replicon Particle Vaccine Protects Strain 13/N Guinea Pigs Against Challenge With Geographically and Genetically Diverse Viral Strains. Journal of Infectious Diseases, 2022, 226, 1545-1550.	4.0	7
3	Defective Interfering Viral Particle Treatment Reduces Clinical Signs and Protects Hamsters from Lethal Nipah Virus Disease. MBio, 2022, 13, e0329421.	4.1	14
4	Viral RNA and infectious virus in mucosal specimens from guinea pigs modelling early phases of lethal and non-lethal Lassa fever. Emerging Microbes and Infections, 2022, 11, 1390-1393.	6.5	0
5	Viral replicon particles protect IFNAR-/- mice against lethal Crimean-Congo hemorrhagic fever virus challenge three days after vaccination. Antiviral Research, 2021, 191, 105090.	4.1	9
6	The Structure and Immune Regulatory Implications of the Ubiquitin-Like Tandem Domain Within an Avian 2'-5' Oligoadenylate Synthetase-Like Protein. Frontiers in Immunology, 2021, 12, 794664.	4.8	1
7	In Situ Imaging of Fluorescent Nipah Virus Respiratory and Neurological Tissue Tropism in the Syrian Hamster Model. Journal of Infectious Diseases, 2020, 221, S448-S453.	4.0	11
8	Evaluation of a Single-Dose Nucleoside-Modified Messenger RNA Vaccine Encoding Hendra Virus-Soluble Glycoprotein Against Lethal Nipah virus Challenge in Syrian Hamsters. Journal of Infectious Diseases, 2020, 221, S493-S498.	4.0	32
9	Alterations in Blood Chemistry Levels Associated With Nipah Virus Disease in the Syrian Hamster Model. Journal of Infectious Diseases, 2020, 221, S454-S459.	4.0	6
10	The Crimean-Congo Hemorrhagic Fever Virus NSm Protein Is Dispensable for Growth In Vitro and Disease in Ifnar-/- Mice. Microorganisms, 2020, 8, 775.	3.6	12
11	How ISC15 combats viral infection. Virus Research, 2020, 286, 198036.	2.2	51
12	Inhibition of Nipah Virus by Defective Interfering Particles. Journal of Infectious Diseases, 2020, 221, S460-S470.	4.0	23
13	Griffithsin Inhibits Nipah Virus Entry and Fusion and Can Protect Syrian Golden Hamsters From Lethal Nipah Virus Challenge. Journal of Infectious Diseases, 2020, 221, S480-S492.	4.0	36
14	A single mutation in Crimean-Congo hemorrhagic fever virus discovered in ticks impairs infectivity in human cells. ELife, 2020, 9, .	6.0	12
15	Heterologous protection against Crimean-Congo hemorrhagic fever in mice after a single dose of replicon particle vaccine. Antiviral Research, 2019, 170, 104573.	4.1	17
16	Stable Occupancy of the Crimean-Congo Hemorrhagic Fever Virus-Encoded Deubiquitinase Blocks Viral Infection. MBio, 2019, 10, .	4.1	12
17	Probing the impact of nairovirus genomic diversity on viral ovarian tumor domain protease (vOTU) structure and deubiquitinase activity. PLoS Pathogens, 2019, 15, e1007515.	4.7	26
18	Protection From Lethal Lassa Disease Can Be Achieved Both Before and After Virus Exposure by Administration of Single-Cycle Replicating Lassa Virus Replicon Particles. Journal of Infectious Diseases, 2019, 220, 1281-1289.	4.0	13

FLORINE E M SCHOLTE

#	Article	IF	CITATIONS
19	ISG15: It's Complicated. Journal of Molecular Biology, 2019, 431, 4203-4216.	4.2	97
20	Single-dose replicon particle vaccine provides complete protection against Crimean-Congo hemorrhagic fever virus in mice. Emerging Microbes and Infections, 2019, 8, 575-578.	6.5	36
21	Determining the molecular drivers of species-specific interferon-stimulated gene product 15 interactions with nairovirus ovarian tumor domain proteases. PLoS ONE, 2019, 14, e0226415.	2.5	9
22	Fluorescent Crimean-Congo hemorrhagic fever virus illuminates tissue tropism patterns and identifies early mononuclear phagocytic cell targets in Ifnar-/- mice. PLoS Pathogens, 2019, 15, e1008183.	4.7	19
23	The S Genome Segment Is Sufficient to Maintain Pathogenicity in Intra-Clade Lassa Virus Reassortants in a Guinea Pig Model. Frontiers in Cellular and Infection Microbiology, 2018, 8, 240.	3.9	18
24	Identification of 2′-deoxy-2′-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus. Antiviral Research, 2017, 147, 91-99.	4.1	52
25	Crimean-Congo Hemorrhagic Fever Virus Suppresses Innate Immune Responses via a Ubiquitin and ISG15 Specific Protease. Cell Reports, 2017, 20, 2396-2407.	6.4	64
26	Molecular Insights into Crimean-Congo Hemorrhagic Fever Virus. Viruses, 2016, 8, 106.	3.3	92
27	A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins. Journal of Virology, 2015, 89, 8318-8333.	3.4	68
28	Stress Granule Components G3BP1 and G3BP2 Play a Proviral Role Early in Chikungunya Virus Replication. Journal of Virology, 2015, 89, 4457-4469.	3.4	130
29	Temporal SILACâ€based quantitative proteomics identifies host factors involved in chikungunya virus replication. Proteomics, 2015, 15, 2267-2280.	2.2	16
30	Chikungunya virus non-structural protein 2-mediated host shut-off disables the unfolded protein response. Journal of General Virology, 2015, 96, 580-589.	2.9	60
31	An in vitro assay to study chikungunya virus RNA synthesis and the mode of action of inhibitors. Journal of General Virology, 2014, 95, 2683-2692.	2.9	26
32	Inhibition of Dengue and Chikungunya Virus Infections by RIG-I-Mediated Type I Interferon-Independent Stimulation of the Innate Antiviral Response. Journal of Virology, 2014, 88, 4180-4194.	3.4	112
33	Characterization of Synthetic Chikungunya Viruses Based on the Consensus Sequence of Recent E1-226V Isolates. PLoS ONE, 2013, 8, e71047.	2.5	70
34	Dissection of the Influenza A Virus Endocytic Routes Reveals Macropinocytosis as an Alternative Entry Pathway. PLoS Pathogens, 2011, 7, e1001329.	4.7	267