Luis M Campos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8191244/publications.pdf

Version: 2024-02-01

113	8,274	46 h-index	89
papers	citations		g-index
118	118	118	10401 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Singlet fission and triplet pair recombination in bipentacenes with a twist. Materials Horizons, 2022, 9, 462-470.	6.4	14
2	Quantifying Exciton Transport in Singlet Fission Diblock Copolymers. Journal of the American Chemical Society, 2022, 144, 3269-3278.	6.6	17
3	Interplay between Magnetoresistance and Kondo Resonance in Radical Single-Molecule Junctions. Nano Letters, 2022, 22, 5773-5779.	4.5	10
4	Highly conducting single-molecule topological insulators based on mono- and di-radical cations. Nature Chemistry, 2022, 14, 1061-1067.	6.6	38
5	In silico prediction of annihilators for triplet–triplet annihilation upconversion via auxiliary-field quantum Monte Carlo. Chemical Science, 2021, 12, 1068-1079.	3.7	7
6	Photon Upconversion Hydrogels for 3D Optogenetics. Advanced Functional Materials, 2021, 31, 2010907.	7.8	19
7	Pentacene–Bridge Interactions in an Axially Chiral Binaphthyl Pentacene Dimer. Journal of Physical Chemistry A, 2021, 125, 7226-7234.	1.1	7
8	Destructive quantum interference in heterocyclic alkanes: the search for ultra-short molecular insulators. Chemical Science, 2021, 12, 10299-10305.	3.7	17
9	Singlet fission in a hexacene dimer: energetics dictate dynamics. Chemical Science, 2020, 11, 1079-1084.	3.7	35
10	Impact of Electrostatic Interactions on the Self-Assembly of Charge-Neutral Block Copolyelectrolytes. Macromolecules, 2020, 53, 548-557.	2.2	14
11	Molecular Engineering of Chromophores to Enable Triplet–Triplet Annihilation Upconversion. Journal of the American Chemical Society, 2020, 142, 19917-19925.	6.6	42
12	Cyclopropenium Nanoparticles and Gene Transfection in Cells. Pharmaceutics, 2020, 12, 768.	2.0	17
13	Bridge Resonance Effects in Singlet Fission. Journal of Physical Chemistry A, 2020, 124, 9392-9399.	1.1	16
14	Asymmetric trisalkylamine cyclopropenium derivatives with antimicrobial activity. Bioorganic Chemistry, 2020, 102, 104069.	2.0	1
15	Charge transfer states impact the triplet pair dynamics of singlet fission polymers. Journal of Chemical Physics, 2020, 153, 244902.	1.2	13
16	Ultra-fast intramolecular singlet fission to persistent multiexcitons by molecular design. Nature Chemistry, 2019, 11, 821-828.	6.6	85
17	Understanding the Bound Triplet-Pair State in Singlet Fission. CheM, 2019, 5, 1988-2005.	5.8	63
18	Molecular conductance versus inductive effects of axial ligands on the electrocatalytic activity of self-assembled iron phthalocyanines: The oxygen reduction reaction. Electrochimica Acta, 2019, 327, 134996.	2.6	14

#	Article	IF	CITATIONS
19	Photoredox catalysis using infrared light via triplet fusion upconversion. Nature, 2019, 565, 343-346.	13.7	447
20	Impact of building block structure on ion transport in cyclopropenium-based polymerized ionic liquids. Polymer Chemistry, 2019, 10, 2832-2839.	1.9	11
21	Abbildung des Orbitals des ungepaarten Elektrons in einem stabilen, organischen Radikal anhand seiner Kondoâ€Resonanz. Angewandte Chemie, 2019, 131, 11179-11183.	1.6	1
22	Persistent Multiexcitons from Polymers with Pendent Pentacenes. Journal of the American Chemical Society, 2019, 141, 9564-9569.	6.6	31
23	Resolving the Unpairedâ€Electron Orbital Distribution in a Stable Organic Radical by Kondo Resonance Mapping. Angewandte Chemie - International Edition, 2019, 58, 11063-11067.	7.2	27
24	Microphase segregation and selective chain scission of poly(2â€methylâ€2â€oxazoline)â€ <i>block</i> \$\frac{1}{2}\$\$epolystyrene. Journal of Polymer Science Part A, 2019, 57, 1349-1	1 3 57.	5
25	Hierarchical patterns with sub-20 nm pattern fidelity <i>via</i> block copolymer self-assembly and soft nanotransfer printing. Polymer Chemistry, 2019, 10, 3194-3200.	1.9	3
26	Cyclopropenium-Based Biodegradable Polymers. Macromolecules, 2019, 52, 3543-3550.	2.2	7
27	The Environment-Dependent Behavior of the Blatter Radical at the Metal–Molecule Interface. Nano Letters, 2019, 19, 2543-2548.	4.5	54
28	Annihilator dimers enhance triplet fusion upconversion. Chemical Science, 2019, 10, 3969-3975.	3.7	51
29	Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers. Nature Chemistry, 2019, 11, 351-358.	6.6	202
30	Tunable Emission from Triplet Fusion Upconversion in Diketopyrrolopyrroles. Journal of the American Chemical Society, 2019, 141, 3777-3781.	6.6	66
31	Anticipating Acene-Based Chromophore Spectra with Molecular Orbital Arguments. Journal of Physical Chemistry A, 2019, 123, 2527-2536.	1.1	21
32	Breaking Down Resonance: Nonlinear Transport and the Breakdown of Coherent Tunneling Models in Single Molecule Junctions. Nano Letters, 2019, 19, 2555-2561.	4.5	32
33	The butterfly effect in bisfluorenylidene-based dihydroacenes: aggregation induced emission and spin switching. Chemical Science, 2019, 10, 10733-10739.	3.7	42
34	Ion Transport in Cyclopropenium-Based Polymerized Ionic Liquids. Macromolecules, 2018, 51, 1681-1687.	2.2	45
35	Multifunctional Vesicles from a Self-assembled Cluster-Containing Diblock Copolymer. Journal of the American Chemical Society, 2018, 140, 5607-5611.	6.6	23
36	Crosslinked colloids with cyclopropenium cations. Journal of Polymer Science Part A, 2018, 56, 2641-2645.	2.5	6

#	Article	IF	Citations
37	Tuning the polarity of charge carriers using electron deficient thiophenes. Chemical Science, 2017, 8, 3254-3259.	3.7	23
38	Influence of Nanostructure on the Exciton Dynamics of Multichromophore Donor–Acceptor Block Copolymers. ACS Nano, 2017, 11, 4593-4598.	7.3	15
39	Reversible on-surface wiring of resistive circuits. Chemical Science, 2017, 8, 4340-4346.	3.7	5
40	Singlet Fission: Progress and Prospects in Solar Cells. Advanced Materials, 2017, 29, 1601652.	11.1	158
41	A reversible single-molecule switch based on activated antiaromaticity. Science Advances, 2017, 3, eaao2615.	4.7	94
42	A Birds-Eye View of the Uphill Landscape in Endothermic Singlet Fission. CheM, 2017, 3, 536-538.	5.8	4
43	Triplet Harvesting from Intramolecular Singlet Fission in Polytetracene. Advanced Materials, 2017, 29, 1701416.	11.1	70
44	Distinct properties of the triplet pair state from singlet fission. Science Advances, 2017, 3, e1700241.	4.7	102
45	Fully charged: Maximizing the potential of cationic polyelectrolytes in applications ranging from membranes to gene delivery through rational design. Journal of Polymer Science Part A, 2017, 55, 3167-3174.	2.5	16
46	Dimerization of Endohedral Fullerene in a Superatomic Crystal. Chemistry - A European Journal, 2017, 23, 13305-13308.	1.7	13
47	Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission. Physical Chemistry Chemical Physics, 2017, 19, 23162-23175.	1.3	31
48	Tuning Singlet Fission in π-Bridge-π Chromophores. Journal of the American Chemical Society, 2017, 139, 12488-12494.	6.6	147
49	Quintet multiexciton dynamics in singlet fission. Nature Physics, 2017, 13, 182-188.	6.5	220
50	Influence of Substituent Chain Branching on the Transfection Efficacy of Cyclopropenium-Based Polymers, 2017, 9, 79.	2.0	13
51	Preparation of nonâ€spherical particles from amphiphilic block copolymers. Journal of Polymer Science Part A, 2016, 54, 750-757.	2.5	21
52	Intramolecular Singlet Fission in Oligoacene Heterodimers. Angewandte Chemie, 2016, 128, 3434-3438.	1.6	38
53	Exciton Correlations in Intramolecular Singlet Fission. Journal of the American Chemical Society, 2016, 138, 7289-7297.	6.6	117
54	A Direct Mechanism of Ultrafast Intramolecular Singlet Fission in Pentacene Dimers. ACS Central Science, 2016, 2, 316-324.	5. 3	176

#	Article	IF	Citations
55	Clickable Poly(ionic liquids): A Materials Platform for Transfection. Angewandte Chemie, 2016, 128, 12570-12574.	1.6	4
56	Clickable Poly(ionic liquids): A Materials Platform for Transfection. Angewandte Chemie - International Edition, 2016, 55, 12382-12386.	7.2	47
57	Mapping the Transmission Functions of Single-Molecule Junctions. Nano Letters, 2016, 16, 3949-3954.	4.5	58
58	Intramolecular Singlet Fission in Oligoacene Heterodimers. Angewandte Chemie - International Edition, 2016, 55, 3373-3377.	7.2	109
59	Properties of Poly- and Oligopentacenes Synthesized from Modular Building Blocks. Macromolecules, 2016, 49, 1279-1285.	2.2	34
60	PROFILE: Early Excellence in <i>Physical Organic Chemistry</i> . Journal of Physical Organic Chemistry, 2015, 28, 575-576.	0.9	0
61	Single-molecule diodes with high rectification ratios through environmental control. Nature Nanotechnology, 2015, 10, 522-527.	15.6	360
62	Fast Singlet Exciton Decay in Push–Pull Molecules Containing Oxidized Thiophenes. Journal of Physical Chemistry B, 2015, 119, 7644-7650.	1.2	34
63	Molecular length dictates the nature of charge carriers in single-molecule junctions of oxidized oligothiophenes. Nature Chemistry, 2015, 7, 209-214.	6.6	147
64	The evolution of cyclopropenium ions into functional polyelectrolytes. Nature Communications, 2015, 6, 5950.	5.8	54
65	A design strategy for intramolecular singlet fission mediated by charge-transfer states inÂdonor–acceptor organic materials. Nature Materials, 2015, 14, 426-433.	13.3	298
66	Correlating Structure and Function in Organic Electronics: From Single Molecule Transport to Singlet Fission. Chemistry of Materials, 2015, 27, 5453-5463.	3.2	50
67	Quantitative Intramolecular Singlet Fission in Bipentacenes. Journal of the American Chemical Society, 2015, 137, 8965-8972.	6.6	324
68	Synthesis of Robust Surface-Charged Nanoparticles Based on Cyclopropenium Ions. Macromolecules, 2015, 48, 2519-2525.	2.2	16
69	Three-Phase Morphology of Semicrystalline Polymer Semiconductors: A Quantitative Analysis. ACS Macro Letters, 2015, 4, 1051-1055.	2.3	28
70	Polymeric supramolecular assemblies based on multivalent ionic interactions for biomedical applications. Polymer, 2014, 55, 453-464.	1.8	59
71	Hierarchically Ordered Nanopatterns for Spatial Control of Biomolecules. ACS Nano, 2014, 8, 11846-11853.	7.3	23
72	Control of Single-Molecule Junction Conductance of Porphyrins via a Transition-Metal Center. Nano Letters, 2014, 14, 5365-5370.	4.5	83

#	Article	IF	Citations
73	Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1469-1475.	2.4	28
74	Length-Dependent Conductance of Oligothiophenes. Journal of the American Chemical Society, 2014, 136, 10486-10492.	6.6	127
75	Engineering Topochemical Polymerizations Using Block Copolymer Templates. Journal of the American Chemical Society, 2014, 136, 13381-13387.	6.6	65
76	Breakdown of Interference Rules in Azulene, a Nonalternant Hydrocarbon. Nano Letters, 2014, 14, 2941-2945.	4.5	113
77	Impact of Molecular Symmetry on Single-Molecule Conductance. Journal of the American Chemical Society, 2013, 135, 11724-11727.	6.6	57
78	Advancements and challenges of patterning biomolecules with sub-50 nm features. Soft Matter, 2013, 9, 6578.	1.2	41
79	Materials for the preparation of polymer pen lithography tip arrays and a comparison of their printing properties. Journal of Polymer Science Part A, 2013, 51, 1533-1539.	2.5	24
80	Monoliths of Semiconducting Block Copolymers by Magnetic Alignment. ACS Nano, 2013, 7, 5514-5521.	7.3	56
81	Strongly Phase-Segregating Block Copolymers with Sub-20 nm Features. ACS Macro Letters, 2013, 2, 677-682.	2.3	25
82	A facile synthesis of clickable and acid-cleavable PEO for acid-degradable block copolymers. Polymer Chemistry, 2012, 3, 1890-1898.	1.9	83
83	Nanopatterning Biomolecules by Block Copolymer Self-Assembly. ACS Macro Letters, 2012, 1, 758-763.	2.3	33
84	The preparation of thiophene-S,S-dioxides and their role in organic electronics. Journal of Materials Chemistry, 2012, 22, 12945.	6.7	52
85	Low-temperature ketene formation in materials chemistry through molecular engineering. Chemical Science, 2012, 3, 766-771.	3.7	33
86	A facile route to patterned epitaxial ZnO nanostructures by soft lithography. Journal of Materials Chemistry, 2011, 21, 14417.	6.7	19
87	Stimuli-Responsive Azulene-Based Conjugated Oligomers with Polyaniline-like Properties. Journal of the American Chemical Society, 2011, 133, 10046-10049.	6.6	161
88	A General Approach to Controlling the Surface Composition of Poly(ethylene oxide)-Based Block Copolymers for Antifouling Coatings. Langmuir, 2011, 27, 13762-13772.	1.6	106
89	De Novo Design of Bioactive Protein-Resembling Nanospheres via Dendrimer-Templated Peptide Amphiphile Assembly. Nano Letters, 2011, 11, 3946-3950.	4.5	49
90	Poly(allyl glycidyl ether)â€A versatile and functional polyether platform. Journal of Polymer Science Part A, 2011, 49, 4498-4504.	2.5	104

#	Article	IF	Citations
91	Tunable, High Modulus Hydrogels Driven by Ionic Coacervation. Advanced Materials, 2011, 23, 2327-2331.	11.1	315
92	Modular Hydrogels: Tunable, High Modulus Hydrogels Driven by Ionic Coacervation (Adv. Mater.) Tj ETQq0 0 0	rgBT /Overl	ock 10 Tf 50
93	Nanostructured Hybrid Solar Cells: Dependence of the Open Circuit Voltage on the Interfacial Composition. Advanced Materials, 2010, 22, 4982-4986.	11.1	21
94	A versatile approach to high-throughput microarrays using thiol-ene chemistry. Nature Chemistry, 2010, 2, 138-145.	6.6	206
95	A facile route to ketene-functionalized polymers for general materials applications. Nature Chemistry, 2010, 2, 207-212.	6.6	109
96	Accelerated Growth of Dendrimers via Thiolâ^Ene and Esterification Reactions. Macromolecules, 2010, 43, 6004-6013.	2.2	90
97	Applications of Photocurable PMMS Thiolâ^'Ene Stamps in Soft Lithography. Chemistry of Materials, 2009, 21, 5319-5326.	3.2	77
98	Radical Reactions with Double Memory of Chirality (2MOC) for the Enantiospecific Synthesis of Adjacent Stereogenic Quaternary Centers in Solution: Cleavage and Bonding Faster than Radical Rotation. Journal of the American Chemical Society, 2009, 131, 8425-8433.	6.6	25
99	Synthesis, properties, and LED performance of highly luminescent metal complexes containing indolizino [3,4,5-ab] isoindoles. Journal of Materials Chemistry, 2009, 19, 5826.	6.7	21
100	Highly ordered nanoporous thin films by blending of PStâ€∢i>bà€PMMA block copolymers and PEO additives as structure directing agents. Journal of Polymer Science Part A, 2008, 46, 8041-8048.	2.5	13
101	Highly Versatile and Robust Materials for Soft Imprint Lithography Based on Thiolâ€ene Click Chemistry. Advanced Materials, 2008, 20, 3728-3733.	11.1	193
102	Robust, Efficient, and Orthogonal Synthesis of Dendrimers via Thiol-ene "Click―Chemistry. Journal of the American Chemical Society, 2008, 130, 5062-5064.	6.6	738
103	Development of Thermal and Photochemical Strategies for Thiolâ ⁻ Ene Click Polymer Functionalization. Macromolecules, 2008, 41, 7063-7070.	2.2	430
104	Holographic Recording in Cross-Linked Polymeric Matrices through Photoacid Generation. Chemistry of Materials, 2008, 20, 3669-3674.	3.2	6
105	Photophysical properties of non-homoconjugated 1,2-dihydro, 1,2,3,4-tetrahydro and 1,2,3,4,5,6-hexahydro-C60derivatives. Photochemical and Photobiological Sciences, 2008, 7, 49-55.	1.6	15
106	Norrish Type I vs. Norrish-Yang Type II in the Solid State Photochemistry of CIS-2,6-DI(1-Cyclohexenyl)-Cyclohexanone: A Computational Study. Molecular Crystals and Liquid Crystals, 2006, 456, 15-24.	0.4	5
107	Crystal Phases and Phase Transitions in a Highly Polymorphogenic Solid-State Molecular Gyroscope withmeta-Methoxytrityl Frames. Crystal Growth and Design, 2006, 6, 866-873.	1.4	15
108	Photolysis of Heptanal. Journal of Organic Chemistry, 2006, 71, 6403-6408.	1.7	20

#	Article	IF	CITATIONS
109	Extended Photocurrent Spectrum of a Low Band Gap Polymer in a Bulk Heterojunction Solar Cell. Chemistry of Materials, 2005, 17, 4031-4033.	3.2	193
110	Secondary Alpha Isotope Effects on Deuterium Tunneling in Tripleto-Methylanthrones:Â Extraordinary Sensitivity to Barrier Width. Journal of the American Chemical Society, 2005, 127, 10178-10179.	6.6	17
111	H-abstraction prevails over α-cleavage in the solution and solid state photochemistry of cis-2,6-di(1-cyclohexenyl)cyclohexanone. Tetrahedron Letters, 2003, 44, 6133-6136.	0.7	12
112	Engineering Reactions in Crystalline Solids:Â Predicting Photochemical Decarbonylation from Calculated Thermochemical Parameters. Journal of Organic Chemistry, 2002, 67, 3749-3754.	1.7	47
113	Reactive Intermediates in Crystals: Form and Function. , 0, , 271-331.		6