Dennis R Burton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/819089/publications.pdf Version: 2024-02-01

DENNIS P RUPTON

#	Article	IF	CITATIONS
1	Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target. Science, 2009, 326, 285-289.	12.6	1,614
2	Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature, 2011, 477, 466-470.	27.8	1,397
3	Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science, 2020, 369, 956-963.	12.6	1,287
4	Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding. Science, 2011, 333, 1633-1637.	12.6	1,046
5	Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proceedings of the United States of America, 2004, 101, 17033-17038.	7.1	1,039
6	Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nature Protocols, 2017, 12, 1261-1276.	12.0	898
7	Crystal Structure of a Neutralizing Human IgG Against HIV-1: A Template for Vaccine Design. Science, 2001, 293, 1155-1159.	12.6	870
8	Fc receptor but not complement binding is important in antibody protection against HIV. Nature, 2007, 449, 101-104.	27.8	828
9	Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature, 2011, 480, 336-343.	27.8	794
10	Crystal Structure of a Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1477-1483.	12.6	793
11	HIV vaccine design and the neutralizing antibody problem. Nature Immunology, 2004, 5, 233-236.	14.5	721
12	Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature, 2007, 445, 732-737.	27.8	715
13	Rational HIV Immunogen Design to Target Specific Germline B Cell Receptors. Science, 2013, 340, 711-716.	12.6	680
14	Cryo-EM Structure of a Fully Glycosylated Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1484-1490.	12.6	662
15	Antibody Protects Macaques against Vaginal Challenge with a Pathogenic R5 Simian/Human Immunodeficiency Virus at Serum Levels Giving Complete Neutralization In Vitro. Journal of Virology, 2001, 75, 8340-8347.	3.4	649
16	A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield. Science, 2011, 334, 1097-1103.	12.6	644
17	Complement Is Activated by IgG Hexamers Assembled at the Cell Surface. Science, 2014, 343, 1260-1263.	12.6	602
18	Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature, 2013, 503, 224-228.	27.8	593

#	Article	IF	CITATIONS
19	Antibodies, viruses and vaccines. Nature Reviews Immunology, 2002, 2, 706-713.	22.7	571
20	Human Immunodeficiency Virus Type 1 Elite Neutralizers: Individuals with Broad and Potent Neutralizing Activity Identified by Using a High-Throughput Neutralization Assay together with an Analytical Selection Algorithm. Journal of Virology, 2009, 83, 7337-7348.	3.4	538
21	Structural basis of a shared antibody response to SARS-CoV-2. Science, 2020, 369, 1119-1123.	12.6	536
22	Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science, 2020, 369, 731-736.	12.6	534
23	Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nature Medicine, 2009, 15, 951-954.	30.7	509
24	Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature, 2001, 412, 739-743.	27.8	503
25	Broadly Neutralizing Antibodies to HIV and Their Role in Vaccine Design. Annual Review of Immunology, 2016, 34, 635-659.	21.8	500
26	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	12.6	482
27	Broadly Neutralizing Human Anti-HIV Antibody 2G12 Is Effective in Protection against Mucosal SHIV Challenge Even at Low Serum Neutralizing Titers. PLoS Pathogens, 2009, 5, e1000433.	4.7	475
28	Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nature Medicine, 2003, 9, 343-346.	30.7	453
29	Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18921-18925.	7.1	441
30	Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science, 2014, 346, 759-763.	12.6	439
31	Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature, 2019, 566, 393-397.	27.8	419
32	Broadly Neutralizing Anti-HIV Antibody 4E10 Recognizes a Helical Conformation of a Highly Conserved Fusion-Associated Motif in gp41. Immunity, 2005, 22, 163-173.	14.3	410
33	Broadly Neutralizing Antibodies Present New Prospects to Counter Highly Antigenically Diverse Viruses. Science, 2012, 337, 183-186.	12.6	394
34	A robust, high-throughput assay to determine the phagocytic activity of clinical antibody samples. Journal of Immunological Methods, 2011, 366, 8-19.	1.4	393
35	HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science, 2016, 351, 1458-1463.	12.6	382
36	Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. Cell, 2016, 165, 813-826.	28.9	379

#	Article	IF	CITATIONS
37	Hepatitis C Virus E2 Envelope Glycoprotein Core Structure. Science, 2013, 342, 1090-1094.	12.6	374
38	Antibody responses to envelope glycoproteins in HIV-1 infection. Nature Immunology, 2015, 16, 571-576.	14.5	364
39	Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science, 2015, 349, 156-161.	12.6	358
40	A Blueprint for HIV Vaccine Discovery. Cell Host and Microbe, 2012, 12, 396-407.	11.0	348
41	Broadly Neutralizing HIV Antibodies Define a Glycan-Dependent Epitope on the Prefusion Conformation of gp41 on Cleaved Envelope Trimers. Immunity, 2014, 40, 657-668.	14.3	342
42	A Limited Number of Antibody Specificities Mediate Broad and Potent Serum Neutralization in Selected HIV-1 Infected Individuals. PLoS Pathogens, 2010, 6, e1001028.	4.7	335
43	HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies. Immunity, 2016, 45, 483-496.	14.3	335
44	Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies. Immunity, 2013, 39, 245-258.	14.3	332
45	Recent progress in broadly neutralizing antibodies to HIV. Nature Immunology, 2018, 19, 1179-1188.	14.5	331
46	Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17624-17629.	7.1	324
47	Structural Delineation of a Quaternary, Cleavage-Dependent Epitope at the gp41-gp120 Interface on Intact HIV-1 Env Trimers. Immunity, 2014, 40, 669-680.	14.3	323
48	Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nature Structural and Molecular Biology, 2013, 20, 796-803.	8.2	314
49	Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.	12.6	310
50	Nature of Nonfunctional Envelope Proteins on the Surface of Human Immunodeficiency Virus Type 1. Journal of Virology, 2006, 80, 2515-2528.	3.4	309
51	Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Science, 2021, 373, 818-823.	12.6	309
52	Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6205-6210.	7.1	306
53	Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.	28.9	305
54	The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. Nature Reviews Microbiology, 2008, 6, 143-155.	28.6	298

#	Article	IF	CITATIONS
55	Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. Journal of Experimental Medicine, 2014, 211, 2061-2074.	8.5	297
56	Broadly Neutralizing Monoclonal Antibodies 2F5 and 4E10 Directed against the Human Immunodeficiency Virus Type 1 gp41 Membrane-Proximal External Region Protect against Mucosal Challenge by Simian-Human Immunodeficiency Virus SHIV _{Ba-L} . Journal of Virology, 2010, 84, 1302-1313.	3.4	296
57	Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance. Cell, 2019, 177, 1153-1171.e28.	28.9	293
58	Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches. Immunity, 2017, 46, 1073-1088.e6.	14.3	286
59	Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science, 2021, 371, 823-829.	12.6	285
60	Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice. Cell, 2016, 166, 1445-1458.e12.	28.9	270
61	Antibody vs. HIV in a clash of evolutionary titans. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14943-14948.	7.1	268
62	Broadly Neutralizing Antibody PGT121 Allosterically Modulates CD4 Binding via Recognition of the HIV-1 gp120 V3 Base and Multiple Surrounding Glycans. PLoS Pathogens, 2013, 9, e1003342.	4.7	267
63	AAV-expressed eCD4-lg provides durable protection from multiple SHIV challenges. Nature, 2015, 519, 87-91.	27.8	265
64	Passive immunization with a human monoclonal antibody protects hu-PBL-SCID mice against challenge by primary isolates of HIV-1. Nature Medicine, 1997, 3, 1389-1393.	30.7	262
65	Anti-Human Immunodeficiency Virus Type 1 (HIV-1) Antibodies 2F5 and 4E10 Require Surprisingly Few Crucial Residues in the Membrane-Proximal External Region of Glycoprotein gp41 To Neutralize HIV-1. Journal of Virology, 2005, 79, 1252-1261.	3.4	259
66	Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Reports, 2016, 14, 2695-2706.	6.4	250
67	A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B <i>env</i> Gene. Journal of Virology, 2015, 89, 3380-3395.	3.4	247
68	Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11181-11186.	7.1	243
69	Strain-specified relative conformational stability of the scrapie prion protein. Protein Science, 2001, 10, 854-863.	7.6	239
70	Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies. Cell, 2016, 166, 1459-1470.e11.	28.9	230
71	GP120: Biologic Aspects of Structural Features. Annual Review of Immunology, 2001, 19, 253-274.	21.8	226
72	Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science, 2017, 358, 85-90.	12.6	225

#	Article	IF	CITATIONS
73	The antiviral activity of antibodies in vitro and in vivo. Advances in Immunology, 2001, 77, 195-262.	2.2	222
74	Variable Loop Glycan Dependency of the Broad and Potent HIV-1-Neutralizing Antibodies PG9 and PG16. Journal of Virology, 2010, 84, 10510-10521.	3.4	222
75	Passive immunotherapy of viral infections: 'super-antibodies' enter the fray. Nature Reviews Immunology, 2018, 18, 297-308.	22.7	220
76	Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nature Communications, 2021, 12, 2938.	12.8	219
77	Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Reports, 2016, 16, 2327-2338.	6.4	216
78	A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic β-Hairpin Structure. Immunity, 2017, 46, 690-702.	14.3	216
79	Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Science Translational Medicine, 2014, 6, 254ra129.	12.4	204
80	Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11483-11488.	7.1	201
81	Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans. Immunity, 2015, 43, 1053-1063.	14.3	200
82	Identification and specificity of broadly neutralizing antibodies against <scp>HIV</scp> . Immunological Reviews, 2017, 275, 11-20.	6.0	198
83	Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science, 2016, 351, 1078-1083.	12.6	194
84	Autoantibodies to GPI in rheumatoid arthritis: linkage between an animal model and human disease. Nature Immunology, 2001, 2, 746-753.	14.5	187
85	Heterogeneity of Envelope Molecules Expressed on Primary Human Immunodeficiency Virus Type 1 Particles as Probed by the Binding of Neutralizing and Nonneutralizing Antibodies. Journal of Virology, 2003, 77, 353-365.	3.4	178
86	Identification of Common Features in Prototype Broadly Neutralizing Antibodies to HIV Envelope V2 Apex to Facilitate Vaccine Design. Immunity, 2015, 43, 959-973.	14.3	177
87	Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nature Communications, 2017, 8, 14954.	12.8	176
88	Electron-Microscopy-Based Epitope Mapping Defines Specificities of Polyclonal Antibodies Elicited during HIV-1 BG505 Envelope Trimer Immunization. Immunity, 2018, 49, 288-300.e8.	14.3	175
89	Manipulating the Selection Forces during Affinity Maturation to Generate Cross-Reactive HIV Antibodies. Cell, 2015, 160, 785-797.	28.9	173
90	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	28.9	173

#	Article	IF	CITATIONS
91	A generalized HIV vaccine design strategy for priming of broadly neutralizing antibody responses. Science, 2019, 366, .	12.6	172
92	Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nature Medicine, 2020, 26, 430-440.	30.7	172
93	Structural Evolution of Glycan Recognition by a Family of Potent HIV Antibodies. Cell, 2014, 159, 69-79.	28.9	161
94	Promiscuous Glycan Site Recognition by Antibodies to the High-Mannose Patch of gp120 Broadens Neutralization of HIV. Science Translational Medicine, 2014, 6, 236ra63.	12.4	160
95	Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature, 2017, 548, 108-111.	27.8	154
96	Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers. Immunity, 2019, 50, 241-252.e6.	14.3	153
97	Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection. PLoS Pathogens, 2016, 12, e1005520.	4.7	150
98	Direct Probing of Germinal Center Responses Reveals Immunological Features and Bottlenecks for Neutralizing Antibody Responses to HIV Env Trimer. Cell Reports, 2016, 17, 2195-2209.	6.4	150
99	Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity. Journal of Virology, 2015, 89, 10383-10398.	3.4	148
100	HIV-1 antibody — debris or virion?. Nature Medicine, 1997, 3, 366-367.	30.7	147
101	Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci transgenic mice. Science, 2016, 353, 1557-1560.	12.6	147
102	Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles. Nature Communications, 2016, 7, 12041.	12.8	146
103	An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nature Microbiology, 2017, 2, 16199.	13.3	144
104	Multiple roles for HIV broadly neutralizing antibodies. Science Translational Medicine, 2019, 11, .	12.4	144
105	Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. Nature Communications, 2017, 8, 1655.	12.8	142
106	Early Antibody Lineage Diversification and Independent Limb Maturation Lead to Broad HIV-1 Neutralization Targeting the Env High-Mannose Patch. Immunity, 2016, 44, 1215-1226.	14.3	138
107	Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9499-9504.	7.1	135
108	Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers. Cell Reports, 2015, 11, 1604-1613.	6.4	135

#	Article	IF	CITATIONS
109	Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1 envelope metastability. Nature Communications, 2016, 7, 12040.	12.8	134
110	Advancing an HIV vaccine; advancing vaccinology. Nature Reviews Immunology, 2019, 19, 77-78.	22.7	134
111	Antibody-mediated protection against SHIV challenge includes systemic clearance of distal virus. Science, 2016, 353, 1045-1049.	12.6	129
112	A Prominent Site of Antibody Vulnerability on HIV Envelope Incorporates a Motif Associated with CCR5 Binding and Its Camouflaging Glycans. Immunity, 2016, 45, 31-45.	14.3	129
113	Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Science Translational Medicine, 2017, 9, .	12.4	128
114	Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. Nature Communications, 2018, 9, 3693.	12.8	124
115	A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Science Translational Medicine, 2022, 14, eabi9215.	12.4	123
116	What Are the Most Powerful Immunogen Design Vaccine Strategies?. Cold Spring Harbor Perspectives in Biology, 2017, 9, a030262.	5.5	122
117	Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies. Journal of Virology, 2016, 90, 6127-6139.	3.4	117
118	Why do we not have an HIV vaccine and how can we make one?. Nature Medicine, 1998, 4, 495-498.	30.7	112
119	Rational Vaccine Design in the Time of COVID-19. Cell Host and Microbe, 2020, 27, 695-698.	11.0	107
120	Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail. Science Translational Medicine, 2017, 9, .	12.4	106
121	Strategies for a multi-stage neutralizing antibody-based HIV vaccine. Current Opinion in Immunology, 2018, 53, 143-151.	5.5	105
122	Minimally Mutated HIV-1 Broadly Neutralizing Antibodies to Guide Reductionist Vaccine Design. PLoS Pathogens, 2016, 12, e1005815.	4.7	104
123	Immune Tolerance Negatively Regulates B Cells in Knock-In Mice Expressing Broadly Neutralizing HIV Antibody 4E10. Journal of Immunology, 2013, 191, 3186-3191.	0.8	103
124	Comprehensive Antigenic Map of a Cleaved Soluble HIV-1 Envelope Trimer. PLoS Pathogens, 2015, 11, e1004767.	4.7	100
125	Zika virus activates de novo and cross-reactive memory B cell responses in dengue-experienced donors. Science Immunology, 2017, 2, .	11.9	98
126	Toward a more accurate view of human B-cell repertoire by next-generation sequencing, unbiased repertoire capture and single-molecule barcoding. Scientific Reports, 2014, 4, 6778.	3.3	95

#	Article	IF	CITATIONS
127	Protein and Glycan Mimicry in HIV Vaccine Design. Journal of Molecular Biology, 2019, 431, 2223-2247.	4.2	91
128	HIV Envelope Glycoform Heterogeneity and Localized Diversity Govern the Initiation and Maturation of a V2 Apex Broadly Neutralizing Antibody Lineage. Immunity, 2017, 47, 990-1003.e9.	14.3	90
129	Developing an HIV vaccine. Science, 2017, 355, 1129-1130.	12.6	89
130	Neutralizing human monoclonal antibodies prevent Zika virus infection in macaques. Science Translational Medicine, 2017, 9, .	12.4	89
131	A Meta-analysis of Passive Immunization Studies Shows that Serum-Neutralizing Antibody Titer Associates with Protection against SHIV Challenge. Cell Host and Microbe, 2019, 26, 336-346.e3.	11.0	88
132	Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. Nature Communications, 2015, 6, 8167.	12.8	87
133	Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade C SHIV challenge. Science Translational Medicine, 2017, 9, .	12.4	87
134	Rapid development of glycan-specific, broad, and potent anti–HIV-1 gp120 neutralizing antibodies in an R5 SIV/HIV chimeric virus infected macaque. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20125-20129.	7.1	83
135	Mapping Polyclonal Antibody Responses in Non-human Primates Vaccinated with HIV Env Trimer Subunit Vaccines. Cell Reports, 2020, 30, 3755-3765.e7.	6.4	81
136	Drug repurposing screens identify chemical entities for the development of COVID-19 interventions. Nature Communications, 2021, 12, 3309.	12.8	81
137	HIV–1 neutralizing antibodies: How full is the bottle?. Nature Medicine, 1999, 5, 142-144.	30.7	80
138	Two Classes of Broadly Neutralizing Antibodies within a Single Lineage Directed to the High-Mannose Patch of HIV Envelope. Journal of Virology, 2015, 89, 1105-1118.	3.4	80
139	Neutralizing Monoclonal Antibodies Block Human Immunodeficiency Virus Type 1 Infection of Dendritic Cells and Transmission to T Cells. Journal of Virology, 1998, 72, 9788-9794.	3.4	80
140	Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies. PLoS Pathogens, 2015, 11, e1005110.	4.7	78
141	HIV-1 vaccine design through minimizing envelope metastability. Science Advances, 2018, 4, eaau6769.	10.3	75
142	A Broadly Neutralizing Human Monoclonal Antibody Exhibits In Vivo Efficacy Against Both Human Metapneumovirus and Respiratory Syncytial Virus. Journal of Infectious Diseases, 2015, 211, 216-225.	4.0	71
143	Global site-specific analysis of glycoprotein N-glycan processing. Nature Protocols, 2018, 13, 1196-1212.	12.0	71
144	Rapid and Focused Maturation of a VRC01-Class HIV Broadly Neutralizing Antibody Lineage Involves Both Binding and Accommodation of the N276-Glycan. Immunity, 2019, 51, 141-154.e6.	14.3	71

#	Article	IF	CITATIONS
145	bNAber: database of broadly neutralizing HIV antibodies. Nucleic Acids Research, 2014, 42, D1133-D1139.	14.5	69
146	Reprogramming the antigen specificity of B cells using genome-editing technologies. ELife, 2019, 8, .	6.0	69
147	Fetal demise and failed antibody therapy during Zika virus infection of pregnant macaques. Nature Communications, 2018, 9, 1624.	12.8	68
148	Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections. PLoS Pathogens, 2018, 14, e1006860.	4.7	68
149	Scaffolding to build a rational vaccine design strategy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17859-17860.	7.1	67
150	Structure of 2G12 Fab ₂ in Complex with Soluble and Fully Glycosylated HIV-1 Env by Negative-Stain Single-Particle Electron Microscopy. Journal of Virology, 2014, 88, 10177-10188.	3.4	67
151	A Neutralizing Antibody Recognizing Primarily N-Linked Glycan Targets the Silent Face of the HIV Envelope. Immunity, 2018, 48, 500-513.e6.	14.3	66
152	A Boost for HIV Vaccine Design. Science, 2010, 329, 770-773.	12.6	65
153	Live Simian Immunodeficiency Virus Vaccine Correlate of Protection: Local Antibody Production and Concentration on the Path of Virus Entry. Journal of Immunology, 2014, 193, 3113-3125.	0.8	64
154	A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. Science Immunology, 2021, 6, eabf1152.	11.9	63
155	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2020, 16, e1008753.	4.7	61
156	A Panel of IgG1 b12 Variants with Selectively Diminished or Enhanced Affinity for Fcγ Receptors To Define the Role of Effector Functions in Protection against HIV. Journal of Virology, 2011, 85, 10572-10581.	3.4	60
157	Elicitation of Neutralizing Antibodies Targeting the V2 Apex of the HIV Envelope Trimer in a Wild-Type Animal Model. Cell Reports, 2017, 21, 222-235.	6.4	58
158	Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design. PLoS Pathogens, 2017, 13, e1006212.	4.7	58
159	Anti-HIV B Cell Lines as Candidate Vaccine Biosensors. Journal of Immunology, 2012, 189, 4816-4824.	0.8	57
160	Autologous Antibody Responses to an HIV Envelope Glycan Hole Are Not Easily Broadened in Rabbits. Journal of Virology, 2020, 94, .	3.4	57
161	A natural mutation between SARS-CoV-2 and SARS-CoV determines neutralization by a cross-reactive antibody. PLoS Pathogens, 2020, 16, e1009089.	4.7	55
162	Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation. Biochemistry, 2021, 60, 2153-2169.	2.5	54

#	Article	IF	CITATIONS
163	Transplanting Supersites of HIV-1 Vulnerability. PLoS ONE, 2014, 9, e99881.	2.5	51
164	A combination of cross-neutralizing antibodies synergizes to prevent SARS-CoV-2 and SARS-CoV pseudovirus infection. Cell Host and Microbe, 2021, 29, 806-818.e6.	11.0	49
165	Clonify: unseeded antibody lineage assignment from next-generation sequencing data. Scientific Reports, 2016, 6, 23901.	3.3	48
166	Glycans Function as Anchors for Antibodies and Help Drive HIV Broadly Neutralizing Antibody Development. Immunity, 2017, 47, 524-537.e3.	14.3	48
167	Selection of Unadapted, Pathogenic SHIVs Encoding Newly Transmitted HIV-1 Envelope Proteins. Cell Host and Microbe, 2014, 16, 412-418.	11.0	47
168	Neutralizing antibody affords comparable protection against vaginal and rectal simian/human immunodeficiency virus challenge in macaques. Aids, 2016, 30, 1543-1551.	2.2	47
169	Rapid Germinal Center and Antibody Responses in Non-human Primates after a Single Nanoparticle Vaccine Immunization. Cell Reports, 2019, 29, 1756-1766.e8.	6.4	47
170	An MPER antibody neutralizes HIV-1 using germline features shared among donors. Nature Communications, 2019, 10, 5389.	12.8	44
171	A Protective Monoclonal Antibody Targets a Site of Vulnerability on the Surface of Rift Valley Fever Virus. Cell Reports, 2018, 25, 3750-3758.e4.	6.4	41
172	Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Communications Biology, 2022, 5, 342.	4.4	41
173	Mechanisms of escape from the PCT128 family of anti-HIV broadly neutralizing antibodies. Retrovirology, 2016, 13, 8.	2.0	40
174	Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses. Nature Immunology, 2022, 23, 960-970.	14.5	39
175	Antibodies from libraries. Nature, 1992, 359, 782-783.	27.8	38
176	Protective Efficacy of Broadly Neutralizing Antibodies with Incomplete Neutralization Activity against Simian-Human Immunodeficiency Virus in Rhesus Monkeys. Journal of Virology, 2017, 91, .	3.4	38
177	Vaccine elicitation of HIV broadly neutralizing antibodies from engineered B cells. Nature Communications, 2020, 11, 5850.	12.8	38
178	Variant-proof vaccines — invest now for the next pandemic. Nature, 2021, 590, 386-388.	27.8	37
179	Al-guided discovery of the invariant host response to viral pandemics. EBioMedicine, 2021, 68, 103390.	6.1	37
180	Disassembly of HIV envelope glycoprotein trimer immunogens is driven by antibodies elicited via immunization. Science Advances, 2021, 7, .	10.3	37

#	Article	IF	CITATIONS
181	The Chimpanzee SIV Envelope Trimer: Structure and Deployment as an HIV Vaccine Template. Cell Reports, 2019, 27, 2426-2441.e6.	6.4	35
182	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nature Communications, 2021, 12, 4817.	12.8	35
183	A broad and potent neutralization epitope in SARS-related coronaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	34
184	Unprecedented Role of Hybrid <i>N-</i> Glycans as Ligands for HIV-1 Broadly Neutralizing Antibodies. Journal of the American Chemical Society, 2018, 140, 5202-5210.	13.7	33
185	Protection of Humanized Mice From Repeated Intravaginal HIV Challenge by Passive Immunization: A Model for Studying the Efficacy of Neutralizing Antibodies In Vivo. Journal of Infectious Diseases, 2016, 214, 612-616.	4.0	33
186	Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathogens, 2017, 13, e1006074.	4.7	33
187	Ebola Virus, Neutrophils, and Antibody Specificity. , 1998, 282, 843a-843.		32
188	Targeting the HIV-1 Spike and Coreceptor with Bi- and Trispecific Antibodies for Single-Component Broad Inhibition of Entry. Journal of Virology, 2018, 92, .	3.4	31
189	Structural basis of broad HIV neutralization by a vaccine-induced cow antibody. Science Advances, 2020, 6, eaba0468.	10.3	31
190	Haplotype-Phased Synthetic Long Reads from Short-Read Sequencing. PLoS ONE, 2016, 11, e0147229.	2.5	29
191	Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers. MBio, 2017, 8, .	4.1	28
192	Mapping Neutralizing Antibody Epitope Specificities to an HIV Env Trimer in Immunized and in Infected Rhesus Macaques. Cell Reports, 2020, 32, 108122.	6.4	28
193	Systems Biology Methods Applied to Blood and Tissue for a Comprehensive Analysis of Immune Response to Hepatitis B Vaccine in Adults. Frontiers in Immunology, 2020, 11, 580373.	4.8	28
194	Neutralization Properties of Simian Immunodeficiency Viruses Infecting Chimpanzees and Gorillas. MBio, 2015, 6, .	4.1	25
195	Infection of monkeys by simian-human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes. Virology, 2015, 475, 37-45.	2.4	25
196	Prevention of hepatitis C virus infection using a broad crossâ€neutralizing monoclonal antibody (AR4A) and epigallocatechin gallate. Liver Transplantation, 2016, 22, 324-332.	2.4	25
197	Square-Dancing Antibodies. Science, 2007, 317, 1507-1508.	12.6	24
198	Fighting the Ebola virus. Nature, 2000, 408, 527-528.	27.8	23

#	Article	IF	CITATIONS
199	Effector function does not contribute to protection from virus challenge by a highly potent HIV broadly neutralizing antibody in nonhuman primates. Science Translational Medicine, 2021, 13, .	12.4	23
200	A human inferred germline antibody binds to an immunodominant epitope and neutralizes Zika virus. PLoS Neglected Tropical Diseases, 2017, 11, e0005655.	3.0	23
201	Hidden Lineage Complexity of Glycan-Dependent HIV-1 Broadly Neutralizing Antibodies Uncovered by Digital Panning and Native-Like gp140 Trimer. Frontiers in Immunology, 2017, 8, 1025.	4.8	21
202	Diverse immunoglobulin gene usage and convergent epitope targeting in neutralizing antibody responses to SARS-CoV-2. Cell Reports, 2021, 35, 109109.	6.4	21
203	Simplifying the synthesis of SIgA: Combination of dIgA and rhSC using affinity chromatography. Methods, 2014, 65, 127-132.	3.8	20
204	HIV-1 escapes from N332-directed antibody neutralization in an elite neutralizer by envelope glycoprotein elongation and introduction of unusual disulfide bonds. Retrovirology, 2016, 13, 48.	2.0	20
205	Potent Plasmablast-Derived Antibodies Elicited by the National Institutes of Health Dengue Vaccine. Journal of Virology, 2017, 91, .	3.4	19
206	Vaccine-induced immune responses against both Gag and Env improve control of simian immunodeficiency virus replication in rectally challenged rhesus macaques. PLoS Pathogens, 2017, 13, e1006529.	4.7	19
207	Differences in the Binding Affinity of an HIV-1 V2 Apex-Specific Antibody for the SIV _{smm/mac} Envelope Glycoprotein Uncouple Antibody-Dependent Cellular Cytotoxicity from Neutralization. MBio, 2019, 10, .	4.1	18
208	HIV envelope trimer-elicited autologous neutralizing antibodies bind a region overlapping the N332 glycan supersite. Science Advances, 2020, 6, eaba0512.	10.3	18
209	Antibody responses induced by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2021, 17, e1009736.	4.7	18
210	Rapid cGMP manufacturing of COVIDâ€19 monoclonal antibody using stable CHO cell pools. Biotechnology and Bioengineering, 2022, 119, 663-666.	3.3	18
211	Preparation and Activities of Macromolecule Conjugates of the CCR5 Antagonist Maraviroc. ACS Medicinal Chemistry Letters, 2014, 5, 133-137.	2.8	17
212	Novel in vitro booster vaccination to rapidly generate antigen-specific human monoclonal antibodies. Journal of Experimental Medicine, 2017, 214, 2471-2490.	8.5	17
213	A pandemic-enabled comparison of discovery platforms demonstrates a nail̈́rve antibody library can match the best immune-sourced antibodies. Nature Communications, 2022, 13, 462.	12.8	17
214	Human monoclonal Fab fragments from a combinatorial library prepared from an individual with a low serum titer to a virus. Human Antibodies, 1994, 5, 3-8.	1.5	16
215	Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. JCI Insight, 2018, 3, .	5.0	16
216	Comparisons of the antibody repertoires of a humanized rodent and humans by high throughput sequencing. Scientific Reports, 2020, 10, 1120.	3.3	14

#	Article	IF	CITATIONS
217	A novel CSP C-terminal epitope targeted by an antibody with protective activity against Plasmodium falciparum. PLoS Pathogens, 2022, 18, e1010409.	4.7	14
218	HIV Broadly Neutralizing Antibodies: Taking Good Care Of The 98%. Immunity, 2016, 45, 958-960.	14.3	13
219	Toward superhuman SARS-CoV-2 immunity?. Nature Medicine, 2021, 27, 5-6.	30.7	13
220	Structural Basis for a Neutralizing Antibody Response Elicited by a Recombinant Hantaan Virus Gn Immunogen. MBio, 2021, 12, e0253120.	4.1	13
221	Antibodies in Human Infectious Disease. Immunologic Research, 2000, 21, 265-278.	2.9	11
222	Optimization of peptide arrays for studying antibodies to hepatitis C virus continuous epitopes. Journal of Immunological Methods, 2014, 402, 35-42.	1.4	11
223	Highly Attenuated Infection With a Vpr-Deleted Molecular Clone of Human Immunodeficiency Virus-1. Journal of Infectious Diseases, 2018, 218, 1447-1452.	4.0	10
224	Dengue Virus Evades AAV-Mediated Neutralizing Antibody Prophylaxis in Rhesus Monkeys. Molecular Therapy, 2017, 25, 2323-2331.	8.2	9
225	Rectal Acquisition of Simian Immunodeficiency Virus (SIV) SIVmac239 Infection despite Vaccine-Induced Immune Responses against the Entire SIV Proteome. Journal of Virology, 2020, 94, .	3.4	7
226	Structural Basis of Zika Virus Specific Neutralization in Subsequent Flavivirus Infections. Viruses, 2020, 12, 1346.	3.3	7
227	Immunochemical engineering of cell surfaces to generate virus resistance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4655-4660.	7.1	6
228	A new lease on life for an HIV-neutralizing antibody class and vaccine target. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
229	Design of immunogens to elicit broadly neutralizing antibodies against HIV targeting the CD4 binding site. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
230	Accelerated Clearance and Degradation of Cell-Free HIV by Neutralizing Antibodies Occurs via FcγRIIb on Liver Sinusoidal Endothelial Cells by Endocytosis. Journal of Immunology, 2021, 206, 1284-1296.	0.8	6
231	Enhanced Ability of Plant-Derived PGT121 Glycovariants To Eliminate HIV-1-Infected Cells. Journal of Virology, 2021, 95, e0079621.	3.4	6
232	Induction of Transient Virus Replication Facilitates Antigen-Independent Isolation of SIV-Specific Monoclonal Antibodies. Molecular Therapy - Methods and Clinical Development, 2020, 16, 225-237.	4.1	5
233	Amping up HIV antibodies. Science, 2021, 372, 1397-1398.	12.6	5
234	A Rapid Assay for SARS-CoV-2 Neutralizing Antibodies That Is Insensitive to Antiretroviral Drugs. Journal of Immunology, 2021, 207, 344-351.	0.8	5

#	Article	IF	CITATIONS
235	Swift antibodies to counter emerging viruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10082-10083.	7.1	4
236	Toward a Carbohydrate-Based HIV-1 Vaccine. ACS Symposium Series, 2006, , 161-185.	0.5	3
237	Toward a Carbohydrate-Based HIV-1 Vaccine. ACS Symposium Series, 2012, , 187-215.	0.5	3
238	A Recombinant HIV Envelope Trimer Selects for Quaternary Dependent Antibodies Targeting the Trimer Apex. AIDS Research and Human Retroviruses, 2014, 30, A7-A8.	1.1	3
239	Taking down defenses to improve vaccines. Science, 2018, 359, 277-278.	12.6	3
240	Antibody barriers to going viral. Journal of Experimental Medicine, 2019, 216, 2226-2228.	8.5	2
241	Importance of anti-HIV-1 antibodies. Nature Medicine, 1997, 3, 591-591.	30.7	1
242	Antiacetylcholine Receptor Fab Fragments Isolated from Thymus-derived Phage Display Libraries from Myasthenia Gravis Patients Reflect Predominant Specificities in Serum and Block the Action of Pathogenic Serum Antibodies. Annals of the New York Academy of Sciences, 1998, 841, 414-417.	3.8	1
243	Mapping Neutralizing Antibody Epitope Specificities to an HIV Env Trimer in Immunized and in Infected Rhesus Macaques. SSRN Electronic Journal, 0, , .	0.4	1
244	Effect of copper on recombinant mouse prion protein. Biochemical Society Transactions, 2000, 28, A36-A36.	3.4	0
245	Development of a V1/V2-targeting Quaternary-specific Broadly Neutralizing Lineage. AIDS Research and Human Retroviruses, 2014, 30, A34-A35.	1.1	0
246	An Automated Fluorescence-Based Method to Isolate Bone Marrow-Derived Plasma Cells from Rhesus Macaques Using SIVmac239 SOSIP.664. Molecular Therapy - Methods and Clinical Development, 2020, 18, 781-790.	4.1	0
247	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
248	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
249	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
250	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0