Hanze Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8190724/publications.pdf Version: 2024-02-01

	331670	434195
1,754	21	31
citations	h-index	g-index
32	32	1970
docs citations	times ranked	citing authors
		1,75421citationsh-index3232

HANZE HU

#	Article	IF	CITATIONS
1	Bioinspired Diselenideâ€Bridged Mesoporous Silica Nanoparticles for Dualâ€Responsive Protein Delivery. Advanced Materials, 2018, 30, e1801198.	21.0	234
2	Design of therapeutic biomaterials to control inflammation. Nature Reviews Materials, 2022, 7, 557-574.	48.7	187
3	Janus Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Antiâ€Metastatic Immunotherapy. Advanced Science, 2019, 6, 1901690.	11.2	169
4	Engineering Cell Membraneâ€Based Nanotherapeutics to Target Inflammation. Advanced Science, 2019, 6, 1900605.	11.2	143
5	Biomimetic Diselenideâ€Bridged Mesoporous Organosilica Nanoparticles as an Xâ€rayâ€Responsive Biodegradable Carrier for Chemoâ€Immunotherapy. Advanced Materials, 2020, 32, e2004385.	21.0	122
6	Treatment of severe sepsis with nanoparticulate cell-free DNA scavengers. Science Advances, 2020, 6, eaay7148.	10.3	94
7	A nanoparticulate dual scavenger for targeted therapy of inflammatory bowel disease. Science Advances, 2022, 8, eabj2372.	10.3	87
8	Engineered Mesenchymal Stem Cell/Nanomedicine Spheroid as an Active Drug Delivery Platform for Combinational Glioblastoma Therapy. Nano Letters, 2019, 19, 1701-1705.	9.1	71
9	A multifunctional mesoporous silica–gold nanocluster hybrid platform for selective breast cancer cell detection using a catalytic amplification-based colorimetric assay. Nanoscale, 2019, 11, 2631-2636.	5.6	68
10	Applications of Nanobiomaterials in the Therapy and Imaging of Acute Liver Failure. Nano-Micro Letters, 2021, 13, 25.	27.0	62
11	Precision-guided long-acting analgesia by hydrogel-immobilized bupivacaine-loaded microsphere. Theranostics, 2018, 8, 3331-3347.	10.0	54
12	Shape Engineering Boosts Magnetic Mesoporous Silica Nanoparticle-Based Isolation and Detection of Circulating Tumor Cells. ACS Applied Materials & Interfaces, 2018, 10, 10656-10663.	8.0	53
13	Biomimetic co-assembled nanodrug of doxorubicin and berberine suppresses chemotherapy-exacerbated breast cancer metastasis. Biomaterials, 2021, 271, 120716.	11.4	49
14	A Versatile Nonviral Delivery System for Multiplex Geneâ€Editing in the Liver. Advanced Materials, 2020, 32, e2003537.	21.0	45
15	Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing. Journal of Materials Chemistry B, 2021, 9, 94-100.	5.8	45
16	A Versatile and Robust Platform for the Scalable Manufacture of Biomimetic Nanovaccines. Advanced Science, 2021, 8, 2002020.	11.2	43
17	Coordination and Redox Dualâ€Responsive Mesoporous Organosilica Nanoparticles Amplify Immunogenic Cell Death for Cancer Chemoimmunotherapy. Small, 2021, 17, e2100006.	10.0	40
18	Flash technology-based self-assembly in nanoformulation: Fabrication to biomedical applications. Materials Today, 2021, 42, 99-116.	14.2	35

Hanze Hu

#	Article	IF	CITATIONS
19	An Injectable Antibiotic Hydrogel that Scavenges Proinflammatory Factors for the Treatment of Severe Abdominal Trauma. Advanced Functional Materials, 2022, 32, .	14.9	32
20	Engineering Nanoâ€Therapeutics to Boost Adoptive Cell Therapy for Cancer Treatment. Small Methods, 2021, 5, e2001191.	8.6	31
21	Bioactive Injectable Hydrogel Dressings for Bacteria-Infected Diabetic Wound Healing: A "Pull–Push― Approach. ACS Applied Materials & Interfaces, 2022, 14, 26404-26417.	8.0	30
22	Biomaterial-assisted drug delivery for interstitial cystitis/bladder pain syndrome treatment. Journal of Materials Chemistry B, 2021, 9, 23-34.	5.8	16
23	Scalable biomimetic SARS-CoV‑2 nanovaccines with robust protective immune responses. Signal Transduction and Targeted Therapy, 2022, 7, 96.	17.1	9
24	lmmunotherapy: Janus Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Antiâ€Metastatic Immunotherapy (Adv. Sci. 22/2019). Advanced Science, 2019, 6, 1970136.	11.2	8
25	Scavenging Tumorâ€Đerived Small Extracellular Vesicles by Functionalized 2D Materials to Inhibit Tumor Regrowth and Metastasis Following Radiotherapy. Advanced Functional Materials, 2022, 32, .	14.9	8
26	Silver Mesoporous Silica Nanoparticles: Fabrication to Combination Therapies for Cancer and Infection. Chemical Record, 2022, , e202100287.	5.8	4
27	Chemoimmunotherapy: Coordination and Redox Dualâ€Responsive Mesoporous Organosilica Nanoparticles Amplify Immunogenic Cell Death for Cancer Chemoimmunotherapy (Small 26/2021). Small, 2021, 17, 2170130.	10.0	2
28	Abstract 256: Delta tocopherol inhibits urothelial tumorigenesis in the UPII mutant Ha-ras transgenic mouse model and induces apoptosis via activation of the ATF4/CHOP-DR5 pathway. , 2017, , .		1
29	Abstract 1255: Delta-tocopherol induced endoplasmic reticulum stress causes autophagic degradation of FR and cell death in bladder cancer models. Cancer Research, 2018, 78, 1255-1255	0.9	1