Katherine L Knight

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8190647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probiotic Molecules That Inhibit Inflammatory Diseases. Applied Sciences (Switzerland), 2022, 12, 1147.	2.5	3
2	Human CD36 ^{hi} monocytes induce Foxp3 ⁺ ÂCD25 ⁺ T cells with regulatory functions from CD4 and CD8 subsets. Immunology, 2021, 163, 293-309.	4.4	9
3	Amelioration of Graft-versus-Host Disease by Exopolysaccharide from a Commensal Bacterium. Journal of Immunology, 2021, 206, 2101-2108.	0.8	7
4	Antibiotics Drive Microbial Imbalance and Vitiligo Development in Mice. Journal of Investigative Dermatology, 2020, 140, 676-687.e6.	0.7	38
5	Suppression of Staphylococcus aureus Superantigen-Independent Interferon Gamma Response by a Probiotic Polysaccharide. Infection and Immunity, 2020, 88, .	2.2	11
6	A Caspase-1 Biosensor to Monitor the Progression of Inflammation In Vivo. Journal of Immunology, 2019, 203, 2497-2507.	0.8	18
7	Probiotic Exopolysaccharide Protects against Systemic <i>Staphylococcus aureus</i> Infection, Inducing Dual-Functioning Macrophages That Restrict Bacterial Growth and Limit Inflammation. Infection and Immunity, 2019, 87, .	2.2	25
8	<i>Bacillus subtilis</i> exopolysaccharide prevents allergic eosinophilia. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 819-821.	5.7	13
9	Identification of a new European rabbit IgA with a serine-rich hinge region. PLoS ONE, 2018, 13, e0201567.	2.5	12
10	The wide utility of rabbits as models of human diseases. Experimental and Molecular Medicine, 2018, 50, 1-10.	7.7	103
11	Exopolysaccharide from <i>Bacillus subtilis</i> Induces Anti-Inflammatory M2 Macrophages That Prevent T Cell–Mediated Disease. Journal of Immunology, 2017, 198, 2689-2698.	0.8	68
12	Inflammatory Changes in Bone Marrow Microenvironment Associated with Declining B Lymphopoiesis. Journal of Immunology, 2017, 198, 3471-3479.	0.8	32
13	The remnant of the European rabbit (Oryctolagus cuniculus) IgD gene. PLoS ONE, 2017, 12, e0182029.	2.5	4
14	Induction of antitoxin responses in Clostridium-difficile-infected patients compared to healthy blood donors. Anaerobe, 2016, 41, 91-103.	2.1	10
15	Bone marrow fat and the decline of B lymphopoiesis in rabbits. Developmental and Comparative Immunology, 2016, 58, 30-39.	2.3	14
16	Analysis of Bacterial Communities during Clostridium difficile Infection in the Mouse. Infection and Immunity, 2015, 83, 4383-4391.	2.2	75
17	Inhibition of B Lymphopoiesis by Adipocytes and IL-1–Producing Myeloid-Derived Suppressor Cells. Journal of Immunology, 2015, 195, 2666-2674.	0.8	79
18	Diversification of the Primary Antibody Repertoire by AID-Mediated Gene Conversion. Results and Problems in Cell Differentiation, 2015, 57, 279-293.	0.7	7

KATHERINE L KNIGHT

#	Article	IF	CITATIONS
19	Spore Formation and Toxin Production in Clostridium difficile Biofilms. PLoS ONE, 2014, 9, e87757.	2.5	104
20	Chemokine-Mediated B Cell Trafficking during Early Rabbit GALT Development. Journal of Immunology, 2014, 193, 5951-5959.	0.8	13
21	Protection from Intestinal Inflammation by Bacterial Exopolysaccharides. Journal of Immunology, 2014, 192, 4813-4820.	0.8	83
22	Development of CD27 ⁺ marginal zone B cells requires GALT. European Journal of Immunology, 2013, 43, 1484-1488.	2.9	9
23	Bacillus subtilis-Mediated Protection from Citrobacter rodentium-Associated Enteric Disease Requires <i>espH</i> and Functional Flagella. Infection and Immunity, 2012, 80, 710-719.	2.2	29
24	Adipocyte-Derived Soluble Factor(s) Inhibits Early Stages of B Lymphopoiesis. Journal of Immunology, 2012, 189, 4379-4386.	0.8	40
25	In vitro requirement for periostin in B lymphopoiesis. Blood, 2011, 117, 3770-3779.	1.4	14
26	Somatically Diversified and Proliferating Transitional B Cells: Implications for Peripheral B Cell Homeostasis. Journal of Immunology, 2011, 186, 6437-6444.	0.8	9
27	Mechanism for Pre-B Cell Loss in VH-Mutant Rabbits. Journal of Immunology, 2011, 187, 4714-4720.	0.8	1
28	B Cell Development in GALT: Role of Bacterial Superantigen-Like Molecules. Journal of Immunology, 2010, 184, 6782-6789.	0.8	37
29	A novel functional rabbit IL-7 isoform. Developmental and Comparative Immunology, 2010, 34, 828-836.	2.3	11
30	The Appendix as a Site of Immune Development in Response to Select Bacterial Species. FASEB Journal, 2008, 22, 842.8.	0.5	0
31	Role of BAFF/APRIL in GALT Development. FASEB Journal, 2008, 22, 842.7.	0.5	Ο
32	Suppression of B lymphopoiesis at a lymphoid progenitor stage in adult rabbits. International Immunology, 2007, 19, 801-811.	4.0	16
33	B cell and antibody repertoire development in rabbits: The requirement of gut-associated lymphoid tissues. Developmental and Comparative Immunology, 2006, 30, 137-153.	2.3	125
34	Positive selection of the peripheral B cell repertoire in gut-associated lymphoid tissues. Journal of Experimental Medicine, 2005, 201, 55-62.	8.5	56
35	Role of Commensal Bacteria in Development of Gut-Associated Lymphoid Tissues and Preimmune Antibody Repertoire. Journal of Immunology, 2004, 172, 1118-1124.	0.8	320
36	B Lymphocyte Development in Rabbit: Progenitor B Cells and Waning of B Lymphopoiesis. Journal of Immunology, 2003, 171, 6372-6380.	0.8	54

KATHERINE L KNIGHT

#	Article	IF	CITATIONS
37	Development of the antibody repertoire in rabbit: gut-associated lymphoid tissue, microbes, and selection. Immunological Reviews, 2000, 175, 214-228.	6.0	67
38	Somatic diversification of IgH genes in rabbit. Immunological Reviews, 1998, 162, 37-47.	6.0	18
39	B Lymphocyte Development in the Rabbit. International Reviews of Immunology, 1997, 15, 129-163.	3.3	11
40	Generation of antibody diversity in rabbits. Current Opinion in Immunology, 1997, 9, 228-232.	5.5	55
41	Fetal VDJ gene repertoire in rabbit: evidence for preferential rearrangement ofVH1. European Journal of Immunology, 1995, 25, 2583-2587.	2.9	30
42	Generating the Antibody Repertoire in Rabbit. Advances in Immunology, 1994, 56, 179-218.	2.2	89
43	Restricted utilization of VH and DH genes in leukemic rabbit B cells. European Journal of Immunology, 1990, 20, 397-402.	2.9	44
44	Limited number of immunoglobulin VH regions expressed in the mutant rabbit "Alicia― European Journal of Immunology, 1990, 20, 1401-1404.	2.9	18
45	Somatic diversification of immunoglobulin heavy chain VDJ genes: Evidence for somatic gene conversion in rabbits. Cell, 1990, 63, 987-997.	28.9	255
46	Kinetics of escape from suppression of Ig heavy chain allotypes in multiheterozygous rabbits. European Journal of Immunology, 1979, 9, 276-283.	2.9	18