Brendan M Rogers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/819025/publications.pdf

Version: 2024-02-01

62 papers 6,200 citations

35 h-index 59 g-index

84 all docs 84 docs citations

84 times ranked 8193 citing authors

#	Article	IF	CITATIONS
1	Identifying Barriers to Estimating Carbon Release From Interacting Feedbacks in a Warming Arctic. Frontiers in Climate, 2022, 3, .	2.8	9
2	Bottom-up drivers of future fire regimes in western boreal North America. Environmental Research Letters, 2022, 17, 025006.	5.2	15
3	The ABCflux database: Arctic–boreal CO ₂ flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth System Science Data, 2022, 14, 179-208.	9.9	22
4	Climate change, fire return intervals and the growing risk of permanent forest loss in boreal Eurasia. Science of the Total Environment, 2022, 831, 154885.	8.0	15
5	Wildfire controls on land surface properties in mixed conifer and ponderosa pine forests of Sierra Nevada and Klamath mountains, Western US. Agricultural and Forest Meteorology, 2022, 320, 108939.	4.8	1
6	Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management. Science Advances, 2022, 8, eabl7161.	10.3	23
7	Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nature Climate Change, 2022, 12, 581-586.	18.8	47
8	Influence of atmospheric teleconnections on interannual variability of Arctic-boreal fires. Science of the Total Environment, 2022, 838, 156550.	8.0	5
9	Permafrost carbon feedbacks threaten global climate goals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	88
10	Overwintering fires in boreal forests. Nature, 2021, 593, 399-404.	27.8	70
11	Historic declines in growth portend trembling aspen death during a contemporary leaf miner outbreak in Alaska. Ecosphere, 2021, 12, e03569.	2.2	10
12	The Impacts of Climate and Wildfire on Ecosystem Gross Primary Productivity in Alaska. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006078.	3.0	12
13	Addressing biases in Arctic–boreal carbon cycling in the Community Land Model Version 5. Geoscientific Model Development, 2021, 14, 3361-3382.	3.6	14
14	Statistical upscaling of ecosystem CO ₂ fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Global Change Biology, 2021, 27, 4040-4059.	9.5	83
15	Evaluating the Differenced Normalized Burn Ratio for Assessing Fire Severity Using Sentinel-2 Imagery in Northeast Siberian Larch Forests. Remote Sensing, 2021, 13, 2311.	4.0	25
16	Direct and longer-term carbon emissions from arctic-boreal fires: A short review of recent advances. Current Opinion in Environmental Science and Health, 2021, 23, 100277.	4.1	28
17	Increasing fire and logging disturbances in Siberian boreal forests: a case study of the Angara region. Environmental Research Letters, 2021, 16, 115007.	5.2	13
18	Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	107

#	Article	IF	CITATIONS
19	Impacts of pre-fire conifer density and wildfire severity on ecosystem structure and function at the forest-tundra ecotone. PLoS ONE, 2021, 16, e0258558.	2.5	6
20	Climate change decreases the cooling effect from postfire albedo in boreal North America. Global Change Biology, 2020, 26, 1592-1607.	9.5	29
21	Spaceâ€Based Observations for Understanding Changes in the Arcticâ€Boreal Zone. Reviews of Geophysics, 2020, 58, e2019RG000652.	23.0	39
22	Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nature Climate Change, 2020, 10, 1130-1136.	18.8	82
23	The Fire and Tree Mortality Database, for empirical modeling of individual tree mortality after fire. Scientific Data, 2020, 7, 194.	5.3	13
24	Patterns of Ecosystem Structure and Wildfire Carbon Combustion Across Six Ecoregions of the North American Boreal Forest. Frontiers in Forests and Global Change, 2020, 3, .	2.3	18
25	Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO ₂ seasonal amplification. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21079-21087.	7.1	27
26	Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Global Change Biology, 2020, 26, 6062-6079.	9.5	49
27	Primary Forests Are Undervalued in the Climate Emergency. BioScience, 2020, 70, 445-445.	4.9	14
28	Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environmental Research Letters, 2020, 15, 030201.	5.2	105
29	Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 2020, 108, 2047-2069.	4.0	281
30	Importance of tree- and species-level interactions with wildfire, climate, and soils in interior Alaska: Implications for forest change under a warming climate. Ecological Modelling, 2019, 409, 108765.	2.5	39
31	Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nature Plants, 2019, 5, 952-958.	9.3	101
32	Impacts of climate and insect herbivory on productivity and physiology of trembling aspen (Populus) Tj ETQq0 0	0 rgBT /Ο\	verlock 10 Tf !
33	Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature, 2019, 572, 520-523.	27.8	293
34	Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change, 2019, 9, 852-857.	18.8	225
35	Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. Global Change Biology, 2018, 24, 2284-2304.	9.5	81
36	Missing pieces to modeling the Arctic-Boreal puzzle. Environmental Research Letters, 2018, 13, 020202.	5.2	61

#	Article	IF	CITATIONS
37	Crossâ€scale controls on carbon emissions from boreal forest megafires. Global Change Biology, 2018, 24, 4251-4265.	9.5	60
38	Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters, 2018, 13, 033003.	5.2	198
39	Soil organic layer combustion in boreal black spruce and jack pine stands of the Northwest Territories, Canada. International Journal of Wildland Fire, 2018, 27, 125.	2.4	48
40	Vulnerability of eastern <scp>US</scp> tree species to climate change. Global Change Biology, 2017, 23, 3302-3320.	9.5	64
41	Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 2017, 7, 529-534.	18.8	285
42	Global fire emissions estimates during 1997–2016. Earth System Science Data, 2017, 9, 697-720.	9.9	1,159
43	Fire severity influences the response of soil microbes to a boreal forest fire. Environmental Research Letters, 2016, 11, 035004.	5.2	98
44	Not all droughts are created equal: the impacts of interannual drought pattern and magnitude on grassland carbon cycling. Global Change Biology, 2016, 22, 1809-1820.	9 . 5	109
45	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 2016, 11, 034014.	5. 2	199
46	Vulnerability of Tree Species to Climate Change in the Appalachian Landscape Conservation Cooperative., 2016,, 212-233.		3
47	Historical and Projected Climates as a Basis for Climate Change Exposure and Adaptation Potential across the Appalachian Landscape Conservation Cooperative. , 2016, , 78-94.		2
48	Potential Impacts of Climate Change on Vegetation for National Parks in the Eastern United States. , $2016, 151-173$.		2
49	Black carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soils. Global Biogeochemical Cycles, 2015, 29, 1977-2000.	4.9	23
50	Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosciences, 2015, 12, 3579-3601.	3.3	50
51	Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geoscientific Model Development, 2015, 8, 3593-3619.	3. 6	192
52	Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geoscience, 2015, 8, 228-234.	12.9	320
53	Quantifying fireâ€wide carbon emissions in interior Alaska using field measurements and Landsat imagery. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1608-1629.	3.0	39
54	Mapping the daily progression of large wildland fires using MODIS active fire data. International Journal of Wildland Fire, 2014, 23, 655.	2.4	69

#	Article	IF	CITATIONS
55	Management and climate contributions to satelliteâ€derived active fire trends in the contiguous United States. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 645-660.	3.0	13
56	High-latitude cooling associated with landscape changes from North American boreal forest fires. Biogeosciences, 2013, 10, 699-718.	3.3	71
57	The changing radiative forcing of fires: global model estimates for past, present and future. Atmospheric Chemistry and Physics, 2012, 12, 10857-10886.	4.9	212
58	Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research, 2012, 117, .	3.3	578
59	Model comparisons for estimating carbon emissions from North American wildland fire. Journal of Geophysical Research, $2011,116,.$	3.3	112
60	Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest. Journal of Geophysical Research, 2011, 116, .	3.3	129
61	Climate Change Impacts on Western Pacific Northwest Prairies and Savannas. Northwest Science, 2011, 85, 411-429.	0.2	33
62	Modeling Tamarisk (Tamarix spp.) Habitat and Climate Change Effects in the Northwestern United States. Invasive Plant Science and Management, 2009, 2, 200-215.	1.1	24