
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8190237/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 1336-1343.	13.7	813
2	Singleâ€Junction Binaryâ€Blend Nonfullerene Polymer Solar Cells with 12.1% Efficiency. Advanced Materials, 2017, 29, 1700144.	21.0	629
3	Preparation of MgAl-EDTA-LDH based electrospun nanofiber membrane and its adsorption properties of copper(II) from wastewater. Journal of Hazardous Materials, 2018, 345, 1-9.	12.4	120
4	Highly efficient room-temperature phosphorescence and afterglow luminescence from common organic fluorophores in 2D hybrid perovskites. Chemical Science, 2018, 9, 8975-8981.	7.4	119
5	Light/Forceâ€Sensitive OD Leadâ€Free Perovskites: From Highly Efficient Blue Afterglow to White Phosphorescence with Nearâ€Unity Quantum Efficiency. Angewandte Chemie - International Edition, 2022, 61, .	13.8	85
6	High Color Rendering Index White-Light Emission from UV-Driven LEDs Based on Single Luminescent Materials: Two-Dimensional Perovskites (C ₆ H ₅ C ₂ H ₄ NH ₃) ₂ PbBr <i>_{x< ACS Applied Materials & amp; Interfaces, 2018, 10, 15980-15987.}</i>	800	Ċĺ ⁵ sub>4â€
7	Dopantâ€Free, Donor–Acceptorâ€Type Polymeric Holeâ€Transporting Materials for the Perovskite Solar Cells with Power Conversion Efficiencies over 20%. Advanced Energy Materials, 2020, 10, 1903146.	19.5	74
8	Regulation of clusterization-triggered phosphorescence from a non-conjugated amorphous polymer: a platform for colorful afterglow. Materials Chemistry Frontiers, 2020, 4, 1198-1205.	5.9	68
9	A Λ-shaped donor–ï€â€"acceptor–ï€â€"donor molecule with AIEE and CIEE activity and sequential logic gate behaviour. Journal of Materials Chemistry C, 2015, 3, 7267-7271.	5.5	65
10	Diarylmaleic anhydrides: unusual organic luminescence, multi-stimuli response and photochromism. Journal of Materials Chemistry C, 2017, 5, 2135-2141.	5.5	65
11	Photo-induced phosphorescence and mechanoluminescence switching in a simple purely organic molecule. Journal of Materials Chemistry C, 2019, 7, 2530-2534.	5.5	63
12	A novel high photoluminescence efficiency polymer incorporated with pendant europium complexes. Polymer, 2001, 42, 4605-4610.	3.8	60
13	Strong CIE activity, multi-stimuli-responsive fluorescence and data storage application of new diphenyl maleimide derivatives. Journal of Materials Chemistry C, 2015, 3, 10242-10248.	5.5	58
14	Polymorphism-dependent fluorescence of bisthienylmaleimide with different responses to mechanical crushing and grinding pressure. CrystEngComm, 2014, 16, 11018-11026.	2.6	52
15	Donor–Acceptor Type Polymer Bearing Carbazole Side Chain for Efficient Dopantâ€Free Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, 2102697.	19.5	51
16	Highly Efficient Organic Afterglow from a 2D Layered Lead-Free Metal Halide in Both Crystals and Thin Films under an Air Atmosphere. ACS Applied Materials & Interfaces, 2020, 12, 1419-1426.	8.0	48
17	Perylene and naphthalene diimide polymers for all-polymer solar cells: a comparative study of chemical copolymerization and physical blend. Polymer Chemistry, 2015, 6, 5254-5263.	3.9	47
18	A facile one-pot synthesis of hyper-branched carbazole-based polymer as a hole-transporting material for perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 6613-6621.	10.3	42

#	Article	IF	CITATIONS
19	Ultrastable and colorful afterglow from organic luminophores in amorphous nanocomposites: advanced anti-counterfeiting and in vivo imaging application. Nano Research, 2020, 13, 1035-1043.	10.4	42
20	Large Changes in Fluorescent Color and Intensity of Symmetrically Substituted Arylmaleimides Caused by Subtle Structure Modifications. Chemistry - A European Journal, 2018, 24, 322-326.	3.3	41
21	Nearly Unity Quantum Yield Persistent Roomâ€Temperature Phosphorescence from Heavy Atomâ€Free Rigid Inorganic/Organic Hybrid Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	41
22	Highly efficient solid-state emission of diphenylfumaronitriles with full-color AIE, and application in explosive sensing, data storage and WLEDs. Dyes and Pigments, 2020, 172, 107829.	3.7	35
23	Carbazole-based diphenyl maleimides: Multi-functional smart fluorescent materials for data process and sensing for pressure, explosive and pH. Dyes and Pigments, 2016, 133, 345-353.	3.7	34
24	Amide-based diarylmaleimide derivatives and polymers: Highly selective and ratiometric fluorescence sensing for anions. Dyes and Pigments, 2015, 113, 129-137.	3.7	32
25	Multimode stimuli responsive dual-state organic room temperature phosphorescence from a phenanthrene derivative. Chemical Engineering Journal, 2022, 444, 136629.	12.7	32
26	Perylene Diimideâ€Based Electronâ€Transporting Material for Perovskite Solar Cells with Undoped Poly(3â€hexylthiophene) as Holeâ€Transporting Material. ChemSusChem, 2019, 12, 1155-1161.	6.8	31
27	Multicolor Output from 2D Hybrid Perovskites with Wide Band Gap: Highly Efficient White Emission, Dual-Color Afterglow, and Switch between Fluorescence and Phosphorescence. Journal of Physical Chemistry Letters, 2021, 12, 1040-1045.	4.6	31
28	Water-borne foldable polymer solar cells: one-step transferring free-standing polymer films onto woven fabric electrodes. Journal of Materials Chemistry A, 2017, 5, 782-788.	10.3	30
29	A metal-free 2D layered organic ammonium halide framework realizing full-color persistent room-temperature phosphorescence. Chemical Science, 2021, 12, 14451-14458.	7.4	29
30	Enhancing performance and stability of perovskite solar cells through defect passivation with a polyamide derivative obtained from benzoxazine-isocyanide chemistry. Chemical Engineering Journal, 2022, 431, 133951.	12.7	27
31	Synthesis of Chiral Imidazolium Salts from a Carbohydrate and Their Application in Pd-Catalyzed Suzuki–Miyaura Reaction. Catalysis Letters, 2014, 144, 1911-1918.	2.6	24
32	Metallic nickel–cobalt phosphide/multilayer graphene composite for high-performance supercapacitors. New Journal of Chemistry, 2020, 44, 8796-8804.	2.8	23
33	White light-emitting devices based on star-shape like polymers with diarylmaleimde fluorophores on the side chain of polyfluorene arms. Organic Electronics, 2016, 31, 183-190.	2.6	21
34	Space conjugation induced white light and room-temperature phosphorescence from simple organic small molecules: single-component WLED driven by both UV and blue chips. Materials Chemistry Frontiers, 2021, 5, 6960-6968.	5.9	20
35	Naphthalene diimide-based random terpolymer for efficient all-polymer solar cells with high open circuit voltage. Dyes and Pigments, 2017, 146, 169-177.	3.7	19
36	Perylene and naphthalene diimide copolymers for allâ€polymer solar cells: Effect of perylene/naphthalene ratio. Journal of Polymer Science Part A, 2017, 55, 682-689.	2.3	19

#	Article	IF	CITATIONS
37	Poly(ethylene glycol)―and glucopyranosideâ€substituted Nâ€heterocyclic carbene precursors for the synthesis of arylfluorene derivatives using efficient palladiumâ€catalyzed aqueous Suzuki reaction. Applied Organometallic Chemistry, 2016, 30, 924-931.	3.5	18
38	Highly reproducible and photocurrent hysteresis-less planar perovskite solar cells with a modified solvent annealing method. Solar Energy, 2016, 136, 210-216.	6.1	16
39	Photoactive layer crosslinking in all-polymer solar cells: Stabilized morphology and enhanced thermal-stability. Solar Energy Materials and Solar Cells, 2019, 200, 109982.	6.2	16
40	Diarylmaleimide fluorophores: intensely emissive low-band-gap guest for single white polymers with highly efficient electroluminescence. Journal of Materials Chemistry C, 2016, 4, 9804-9812.	5.5	15
41	Solvent-dependent and highly selective anion sensing and molecular logic application of bisindolylmaleimide derivatives. RSC Advances, 2017, 7, 12161-12169.	3.6	15
42	Donor–Acceptor Type Polymers Containing Fused-Ring Units as Dopant-Free, Hole-Transporting Materials for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 12475-12483.	5.1	15
43	Light/Forceâ€Sensitive 0D Leadâ€Free Perovskites: From Highly Efficient Blue Afterglow to White Phosphorescence with Nearâ€Unity Quantum Efficiency. Angewandte Chemie, 2022, 134, .	2.0	15
44	Greatness in Simplicity: Efficient Red Room-Temperature Phosphorescence from Simple Halogenated Maleimides with a 2D Layered Structure. ACS Applied Materials & Interfaces, 2022, 14, 14703-14711.	8.0	15
45	Synthesis of new conjugated polymers with coordinated praseodymium complexes for polymer memory devices. RSC Advances, 2017, 7, 18384-18391.	3.6	13
46	Synthesis and characterization of two-component acidic ion intercalated layered double hydroxide and its use as a nanoflame-retardant in ethylene vinyl acetate copolymer (EVA). RSC Advances, 2017, 7, 53064-53075.	3.6	13
47	Diarylmaleimide-based branched oligomers: strong full-color emission in both solution and solid films. Organic and Biomolecular Chemistry, 2018, 16, 130-139.	2.8	13
48	Bicomponent Random Approach for the Synthesis of Donor Polymers for Efficient All-Polymer Solar Cells Processed from A Green Solvent. ACS Applied Materials & Interfaces, 2019, 11, 43441-43451.	8.0	13
49	Full-solution processed, flexible, top-emitting polymer light-emitting diodes based on printed Ag electrodes. Journal of Materials Chemistry C, 2017, 5, 6400-6405.	5.5	13
50	Cluster-luminescent polysiloxane nanomaterials: adjustable full-color ultralong room temperature phosphorescence and a highly sensitive response to silver ions. Inorganic Chemistry Frontiers, 2022, 9, 3619-3626.	6.0	12
51	Effect of molecular structure on spin-dependent electron transport in biferrocene-based molecular junctions: a first-principles study. Journal of Computational Electronics, 2017, 16, 340-346.	2.5	11
52	Synthesis of D–A low-bandgap polymer-based thieno[3,4-b]pyrazine and benzo[1,2-b:4,5-bâ€2]dithiophene for polymer solar cells. Polymer Bulletin, 2017, 74, 603-614.	3.3	11
53	Enhanced Performance and Stability of TiO 2 â€Nanoparticlesâ€Based Perovskite Solar Cells Employing a Cheap Polymeric Surface Modifier. ChemSusChem, 2019, 12, 4824-4831.	6.8	11
54	Modifying polymer PM6 by incorporating a third component for an enhanced short-circuit current density. Journal of Materials Chemistry C, 2022, 10, 2026-2033.	5.5	11

#	Article	IF	CITATIONS
55	A synergetic effect of an alkyl-thiophene π-bridge and side chain modification on device performances for stable all-polymer solar cells with high PCE. Journal of Materials Chemistry C, 2018, 6, 8418-8428.	5.5	10
56	Highly-efficient and stable warm white emission from perovskite/silica composites with photoactivated luminescence enhancement. Journal of Materials Chemistry C, 2020, 8, 12623-12631.	5.5	10
57	Highly thermally stable all-polymer solar cells enabled by photo-crosslinkable bromine-functionalized polymer donors. Solar Energy, 2020, 201, 489-498.	6.1	10
58	Highly emissive fused diarylmaleimides synthesized by a cascade reaction of selective bromination and visible-light-driven cyclization. Dyes and Pigments, 2021, 187, 109113.	3.7	10
59	Solution-processed, top-emitting, microcavity polymer light-emitting diodes for the pure red, green, blue and near white emission. Nanotechnology, 2020, 31, 085201.	2.6	9
60	Highly efficient white electroluminescence from dual-core star-shaped single polymer: performance improved by changing the non-emissive core. Journal of Materials Chemistry C, 2018, 6, 4318-4324.	5.5	8
61	Metal ion-induced coordination and cyclization of crown ether-based bisindolylmaleimides: different fluorescence responses and applications in complex logical operations. Journal of Materials Chemistry C, 2019, 7, 13904-13911.	5.5	8
62	Boosting the overall stability of organic solar cells by crosslinking vinyl-functionalized polymer derived from PM6. Materials Chemistry Frontiers, 2022, 6, 1150-1160.	5.9	8
63	New n-Type Copolymers Based on Pentafluorobenzene-Substituted Thieno [3,4-c] Pyrrole-4,6-dione for All-Polymer Solar Cells. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 892-900.	2.2	7
64	Synthesis and optical properties of white phosphorescent carbazole - iridium copolymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 222-226.	2.2	7
65	Dual-core star-shaped single white polymers: the effect of host structure on luminescence properties. Physical Chemistry Chemical Physics, 2017, 19, 12642-12646.	2.8	7
66	Single white polymers based on simple diarylmaleimdes: Polymeric structure and electroluminescent properties. Synthetic Metals, 2017, 230, 18-26.	3.9	7
67	Dynamic dual spectral response on different cations by regulating PET and LMCT process of a simple luminescent sensor. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112775.	3.9	7
68	Highly efficient white emission from UV-driven hybrid LEDs through down-conversion of arylmaleimide-based branched polymers. Journal of Luminescence, 2021, 230, 117742.	3.1	7
69	Simple synthesis of novel terthiophene-based D–A ₁ –D–A ₂ polymers for polymer solar cells. RSC Advances, 2016, 6, 86276-86284.	3.6	6
70	Brominated Small-Molecule Acceptors with a Simple Non-fused Framework for Efficient Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 4805-4814.	5.1	6
71	Theoretical Studies of the Spin-Dependent Electronic Transport Properties in Ethynyl-Terminated Ferrocene Molecular Junctions. Micromachines, 2018, 9, 95.	2.9	5
72	Enhanced thermo-stability and luminecent property of D-A copolymer based on fluorene and thieno[3,4-c]pyrrole-4,6-dione by incorporation of pentafluorobenzene group. Macromolecular Research, 2015, 23, 30-37.	2.4	4

#	Article	IF	CITATIONS
73	Ion exchange bipolar membrane: poly(ether ether ketone) grafting poly(2-(N,N-dimethylaminoethyl)) Tj ETQq1 1 ().784314 i 2.4	rg&T /Overlo
74	Influence of polyhedral oligomeric silsesquioxanes (POSS) on the luminescence properties of non-conjugated copolymers based on iridium complex and carbazole units. RSC Advances, 2017, 7, 39512-39522.	3.6	4
75	Catalysis Studies of Macroreticular Polystyrene Cationâ€exchange Resin with Terminal Perfluoroalkanesulfonic Acids. Journal of the Chinese Chemical Society, 2013, 60, 261-266.	1.4	3
76	Transparent red â€emitting silicone resin for color conversion and encapsulation of NUV lightâ€emitting diodes. Journal of the American Ceramic Society, 2018, 102, 2718.	3.8	3
77	A new kind of porous hybridized nanocomposite: ω-sulfonic-perfluoroalkylated polyalkoxysilane/silica. Journal of Porous Materials, 2013, 20, 851-858.	2.6	1
78	Praseodymium-Containing Polyfluorene: Synthesis, Photoluminescence, and Electroluminescence. Journal of Electronic Materials, 0, , 1.	2.2	1
79	Synthesis and Electrical Memory Properties of Eu-containing Polyimide with Bipyridyl Units. Chemistry Letters, 2022, 51, 364-367.	1.3	0
80	NearlyÂUnity Quantum Yield Persistent Room Temperature Phosphorescence from Heavy Atomâ€Free Rigid Inorganic/Organic Hybrid Frameworks. Angewandte Chemie, 0, , .	2.0	0