Tip W Loo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8190195/publications.pdf

Version: 2024-02-01

	31976	53230
7,758	53	85
citations	h-index	g-index
114	114	3695
docs citations	times ranked	citing authors
	citations 114	7,758 53 citations h-index 114 114

#	Article	IF	CITATIONS
1	Thiol-reactive drug substrates of human P-glycoprotein label the same sites to activate ATPase activity in membranes or dodecyl maltoside detergent micelles. Biochemical and Biophysical Research Communications, 2017, 488, 573-577.	2.1	4
2	Corrector VX-809 promotes interactions between cytoplasmic loop one and the first nucleotide-binding domain of CFTR. Biochemical Pharmacology, 2017, 136, 24-31.	4.4	49
3	Attachment of a â€molecular spring' restores drug-stimulated ATPase activity to P -glycoprotein lacking both Q loop glutamines. Biochemical and Biophysical Research Communications, 2017, 483, 366-370.	2.1	13
4	A short cross-linker activates human P-glycoprotein missing a catalytic carboxylate. Biochemical Pharmacology, 2017, 145, 27-33.	4.4	2
5	P-glycoprotein ATPase activity requires lipids to activate a switch at the first transmission interface. Biochemical and Biophysical Research Communications, 2016, 472, 379-383.	2.1	22
6	Drugs Modulate Interactions between the First Nucleotide-Binding Domain and the Fourth Cytoplasmic Loop of Human P-Glycoprotein. Biochemistry, 2016, 55, 2817-2820.	2.5	6
7	Mapping the Binding Site of the Inhibitor Tariquidar That Stabilizes the First Transmembrane Domain of P-glycoprotein. Journal of Biological Chemistry, 2015, 290, 29389-29401.	3.4	37
8	The Transmission Interfaces Contribute Asymmetrically to the Assembly and Activity of Human P-glycoprotein. Journal of Biological Chemistry, 2015, 290, 16954-16963.	3.4	24
9	Cysteines Introduced into Extracellular Loops 1 and 4 of Human P-Glycoprotein That Are Close Only in the Open Conformation Spontaneously Form a Disulfide Bond That Inhibits Drug Efflux and ATPase Activity. Journal of Biological Chemistry, 2014, 289, 24749-24758.	3.4	11
10	Tariquidar inhibits P-glycoprotein drug efflux but activates ATPase activity by blocking transition to an open conformation. Biochemical Pharmacology, 2014, 92, 558-566.	4.4	44
11	Identification of the Distance between the Homologous Halves of P-glycoprotein That Triggers the High/Low ATPase Activity Switch. Journal of Biological Chemistry, 2014, 289, 8484-8492.	3.4	19
12	The cystic fibrosis V232D mutation inhibits CFTR maturation by disrupting a hydrophobic pocket rather than formation of aberrant interhelical hydrogen bonds. Biochemical Pharmacology, 2014, 88, 46-57.	4.4	11
13	Locking Intracellular Helices 2 and 3 Together Inactivates Human P-glycoprotein. Journal of Biological Chemistry, 2014, 289, 229-236.	3.4	18
14	Corrector VX-809 stabilizes the first transmembrane domain of CFTR. Biochemical Pharmacology, 2013, 86, 612-619.	4.4	99
15	A Salt Bridge in Intracellular Loop 2 Is Essential for Folding of Human P-Glycoprotein. Biochemistry, 2013, 52, 3194-3196.	2.5	23
16	Niemann-Pick NPC1: Sterols to the Rescue and Beyond. Chemistry and Biology, 2013, 20, 297-298.	6.0	3
17	Bithiazole Correctors Rescue CFTR Mutants by Two Different Mechanisms. Biochemistry, 2013, 52, 5161-5163.	2.5	16
18	Drug Rescue Distinguishes between Different Structural Models of Human P-Glycoprotein. Biochemistry, 2013, 52, 7167-7169.	2.5	18

#	Article	IF	CITATIONS
19	Human P-glycoprotein Contains a Greasy Ball-and-Socket Joint at the Second Transmission Interface. Journal of Biological Chemistry, 2013, 288, 20326-20333.	3.4	40
20	The ATPase Activity of the P-glycoprotein Drug Pump Is Highly Activated When the N-terminal and Central Regions of the Nucleotide-binding Domains Are Linked Closely Together. Journal of Biological Chemistry, 2012, 287, 26806-26816.	3.4	54
21	Thiorhodamines containing amide and thioamide functionality as inhibitors of the ATP-binding cassette drug transporter P-glycoprotein (ABCB1). Bioorganic and Medicinal Chemistry, 2012, 20, 4290-4302.	3.0	9
22	Chalcogenopyrylium Compounds as Modulators of the ATP-Binding Cassette Transporters P-Glycoprotein (P-gp/ <i>ABCB1</i>) and Multidrug Resistance Protein 1 (MRP1/ <i>ABCC1</i>). Journal of Medicinal Chemistry, 2012, 55, 4683-4699.	6.4	39
23	Corrector-mediated rescue of misprocessed CFTR mutants can be reduced by the P-glycoprotein drug pump. Biochemical Pharmacology, 2012, 83, 345-354.	4.4	20
24	The W232R Suppressor Mutation Promotes Maturation of a Truncation Mutant Lacking both Nucleotide-Binding Domains and Restores Interdomain Assembly and Activity of P-glycoprotein Processing Mutants. Biochemistry, 2011, 50, 672-685.	2.5	6
25	Benzbromarone Stabilizes î"F508 CFTR at the Cell Surface. Biochemistry, 2011, 50, 4393-4395.	2.5	11
26	Predicting P-Glycoprotein-Mediated Drug Transport Based On Support Vector Machine and Three-Dimensional Crystal Structure of P-glycoprotein. PLoS ONE, 2011, 6, e25815.	2.5	103
27	Repair of CFTR Folding Defects with Correctors that Function as Pharmacological Chaperones. Methods in Molecular Biology, 2011, 741, 23-37.	0.9	6
28	The V510D Suppressor Mutation Stabilizes î"F508-CFTR at the Cell Surface. Biochemistry, 2010, 49, 6352-6357.	2.5	57
29	Human P-glycoprotein is active when the two halves are clamped together in the closed conformation. Biochemical and Biophysical Research Communications, 2010, 395, 436-440.	2.1	54
30	Correctors Enhance Maturation of Î"F508 CFTR by Promoting Interactions between the Two Halves of the Molecule. Biochemistry, 2009, 48, 9882-9890.	2.5	36
31	Rhodamine Inhibitors of P-Glycoprotein: An Amide/Thioamide "Switch―for ATPase Activity. Journal of Medicinal Chemistry, 2009, 52, 3328-3341.	6.4	58
32	Identification of Residues in the Drug Translocation Pathway of the Human Multidrug Resistance P-glycoprotein by Arginine Mutagenesis. Journal of Biological Chemistry, 2009, 284, 24074-24087.	3.4	78
33	Mutational analysis of ABC proteins. Archives of Biochemistry and Biophysics, 2008, 476, 51-64.	3.0	77
34	Processing Mutations Disrupt Interactions between the Nucleotide Binding and Transmembrane Domains of P-glycoprotein and the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Journal of Biological Chemistry, 2008, 283, 28190-28197.	3.4	68
35	Arginines in the First Transmembrane Segment Promote Maturation of a P-glycoprotein Processing Mutant by Hydrogen Bond Interactions with Tyrosines in Transmembrane Segment 11. Journal of Biological Chemistry, 2008, 283, 24860-24870.	3.4	26
36	Correctors promote folding of the CFTR in the endoplasmic reticulum. Biochemical Journal, 2008, 413, 29-36.	3.7	51

#	Article	IF	CITATIONS
37	Correctors Promote Maturation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)-processing Mutants by Binding to the Protein. Journal of Biological Chemistry, 2007, 282, 33247-33251.	3.4	121
38	Modulating the Folding of P-Glycoprotein and Cystic Fibrosis Transmembrane Conductance Regulator Truncation Mutants with Pharmacological Chaperones. Molecular Pharmacology, 2007, 71, 751-758.	2.3	68
39	Chemical and pharmacological chaperones as new therapeutic agents. Expert Reviews in Molecular Medicine, 2007, 9, 1-18.	3.9	92
40	Additive effect of multiple pharmacological chaperones on maturation of CFTR processing mutants. Biochemical Journal, 2007, 406, 257-263.	3.7	55
41	Suppressor Mutations in the Transmembrane Segments of P-glycoprotein Promote Maturation of Processing Mutants and Disrupt a Subset of Drug-binding Sites. Journal of Biological Chemistry, 2007, 282, 32043-32052.	3.4	40
42	Nucleotide Binding, ATP Hydrolysis, and Mutation of the Catalytic Carboxylates of Human P-Glycoprotein Cause Distinct Conformational Changes in the Transmembrane Segments. Biochemistry, 2007, 46, 9328-9336.	2.5	23
43	Transmembrane segment 1 of human P-glycoprotein contributes to the drug-binding pocket. Biochemical Journal, 2006, 396, 537-545.	3.7	78
44	Transmembrane segment 7 of human P-glycoprotein forms part of the drug-binding pocket. Biochemical Journal, 2006, 399, 351-359.	3.7	93
45	The chemical chaperone CFcor-325 repairs folding defects in the transmembrane domains of CFTR-processing mutants. Biochemical Journal, 2006, 395, 537-542.	3.7	45
46	Using a cysteine-less mutant to provide insight into the structure and mechanism of CFTR. Journal of Physiology, 2006, 572, 312-312.	2.9	9
47	Specific Rescue of Cystic Fibrosis Transmembrane Conductance Regulator Processing Mutants Using Pharmacological Chaperones. Molecular Pharmacology, 2006, 70, 297-302.	2.3	89
48	Insertion of an Arginine Residue into the Transmembrane Segments Corrects Protein Misfolding. Journal of Biological Chemistry, 2006, 281, 29436-29440.	3.4	17
49	Recent Progress in Understanding the Mechanism of P-Glycoprotein-mediated Drug Efflux. Journal of Membrane Biology, 2005, 206, 173-185.	2.1	185
50	Rescue of Folding Defects in ABC Transporters Using Pharmacological Chaperones. Journal of Bioenergetics and Biomembranes, 2005, 37, 501-507.	2.3	51
51	The Dileucine Motif at the COOH Terminus of Human Multidrug Resistance P-glycoprotein Is Important for Folding but Not Activity. Journal of Biological Chemistry, 2005, 280, 2522-2528.	3.4	22
52	Rescue of \hat{i} "F508 and Other Misprocessed CFTR Mutants by a Novel Quinazoline Compound. Molecular Pharmaceutics, 2005, 2, 407-413.	4.6	74
53	Do drug substrates enter the common drug-binding pocket of P-glycoprotein through "gates�. Biochemical and Biophysical Research Communications, 2005, 329, 419-422.	2.1	72
54	ATP Hydrolysis Promotes Interactions between the Extracellular Ends of Transmembrane Segments 1 and 11 of Human Multidrug Resistance P-Glycoprotein. Biochemistry, 2005, 44, 10250-10258.	2.5	43

#	Article	IF	Citations
55	Processing Mutations Located throughout the Human Multidrug Resistance P-glycoprotein Disrupt Interactions between the Nucleotide Binding Domains. Journal of Biological Chemistry, 2004, 279, 38395-38401.	3.4	24
56	The Î"F508 Mutation Disrupts Packing of the Transmembrane Segments of the Cystic Fibrosis Transmembrane Conductance Regulator. Journal of Biological Chemistry, 2004, 279, 39620-39627.	3.4	81
57	Disulfiram Metabolites Permanently Inactivate the Human Multidrug Resistance P-Glycoproteinâ€. Molecular Pharmaceutics, 2004, 1, 426-433.	4.6	67
58	The Drug-Binding Pocket of the Human Multidrug Resistance P-Glycoprotein Is Accessible to the Aqueous Medium. Biochemistry, 2004, 43, 12081-12089.	2.5	50
59	Thapsigargin or curcumin does not promote maturation of processing mutants of the ABC transporters, CFTR, and P-glycoprotein. Biochemical and Biophysical Research Communications, 2004, 325, 580-585.	2.1	52
60	Val133 and Cys137 in Transmembrane Segment 2 Are Close to Arg935 and Gly939 in Transmembrane Segment 11 of Human P-glycoprotein. Journal of Biological Chemistry, 2004, 279, 18232-18238.	3.4	53
61	Disulfide Cross-linking Analysis Shows That Transmembrane Segments 5 and 8 of Human P-glycoprotein Are Close Together on the Cytoplasmic Side of the Membrane. Journal of Biological Chemistry, 2004, 279, 7692-7697.	3.4	64
62	Substrate-induced Conformational Changes in the Transmembrane Segments of Human P-glycoprotein. Journal of Biological Chemistry, 2003, 278, 13603-13606.	3 . 4	154
63	Drug Binding in Human P-glycoprotein Causes Conformational Changes in Both Nucleotide-binding Domains. Journal of Biological Chemistry, 2003, 278, 1575-1578.	3.4	101
64	Methanethiosulfonate Derivatives of Rhodamine and Verapamil Activate Human P-glycoprotein at Different Sites. Journal of Biological Chemistry, 2003, 278, 50136-50141.	3 . 4	72
65	Simultaneous Binding of Two Different Drugs in the Binding Pocket of the Human Multidrug Resistance P-glycoprotein. Journal of Biological Chemistry, 2003, 278, 39706-39710.	3.4	157
66	Permanent Activation of the Human P-glycoprotein by Covalent Modification of a Residue in the Drug-binding Site. Journal of Biological Chemistry, 2003, 278, 20449-20452.	3.4	48
67	Application of Chemical Chaperones to the Rescue of Folding Defects. , 2003, 232, 231-244.		4
68	Location of the Rhodamine-binding Site in the Human Multidrug Resistance P-glycoprotein. Journal of Biological Chemistry, 2002, 277, 44332-44338.	3.4	183
69	The "LSGGQ―Motif in Each Nucleotide-binding Domain of Human P-glycoprotein Is Adjacent to the Opposing Walker A Sequence. Journal of Biological Chemistry, 2002, 277, 41303-41306.	3.4	131
70	Introduction of the Most Common Cystic Fibrosis Mutation (Î"F508) into Human P-glycoprotein Disrupts Packing of the Transmembrane Segments. Journal of Biological Chemistry, 2002, 277, 27585-27588.	3.4	36
71	Vanadate trapping of nucleotide at the ATP-binding sites of human multidrug resistance P-glycoprotein exposes different residues to the drug-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3511-3516.	7.1	77
72	Defining the Drug-binding Site in the Human Multidrug Resistance P-glycoprotein Using a Methanethiosulfonate Analog of Verapamil, MTS-verapamil. Journal of Biological Chemistry, 2001, 276, 14972-14979.	3.4	170

#	Article	IF	CITATIONS
73	Cross-linking of Human Multidrug Resistance P-glycoprotein by the Substrate, Tris-(2-maleimidoethyl)amine, Is Altered by ATP Hydrolysis. Journal of Biological Chemistry, 2001, 276, 31800-31805.	3.4	62
74	Determining the Dimensions of the Drug-binding Domain of Human P-glycoprotein Using Thiol Cross-linking Compounds as Molecular Rulers. Journal of Biological Chemistry, 2001, 276, 36877-36880.	3.4	160
75	The Packing of the Transmembrane Segments of Human Multidrug Resistance P-glycoprotein Is Revealed by Disulfide Cross-linking Analysis. Journal of Biological Chemistry, 2000, 275, 5253-5256.	3.4	84
76	Identification of Residues within the Drug-binding Domain of the Human Multidrug Resistance P-glycoprotein by Cysteine-scanning Mutagenesis and Reaction with Dibromobimane. Journal of Biological Chemistry, 2000, 275, 39272-39278.	3.4	121
77	Drug-stimulated ATPase Activity of Human P-glycoprotein Is Blocked by Disulfide Cross-linking between the Nucleotide-binding Sites. Journal of Biological Chemistry, 2000, 275, 19435-19438.	3.4	53
78	The human multidrug resistance Pâ€glycoprotein is inactive when its maturation is inhibited: potential for a role in cancer chemotherapy. FASEB Journal, 1999, 13, 1724-1732.	0.5	84
79	The Transmembrane Domains of the Human Multidrug Resistance P-glycoprotein Are Sufficient to Mediate Drug Binding and Trafficking to the Cell Surface. Journal of Biological Chemistry, 1999, 274, 24759-24765.	3.4	119
80	Identification of Residues in the Drug-binding Domain of Human P-glycoprotein. Journal of Biological Chemistry, 1999, 274, 35388-35392.	3.4	103
81	Molecular dissection of the human multidrug resistance P-glycoprotein. Biochemistry and Cell Biology, 1999, 77, 11-23.	2.0	67
82	Determining the structure and mechanism of the human multidrug resistance P-glycoprotein using cysteine-scanning mutagenesis and thiol-modification techniques. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1461, 315-325.	2.6	74
83	The Glycosylation and Orientation in the Membrane of the Third Cytoplasmic Loop of Human P-Glycoprotein Is Affected by Mutations and Substrates. Biochemistry, 1999, 38, 5124-5129.	2.5	18
84	Nonylphenol Ethoxylates, but Not Nonylphenol, Are Substrates of the Human Multidrug Resistance P-glycoprotein. Biochemical and Biophysical Research Communications, 1998, 247, 478-480.	2.1	21
85	Quality Control by Proteases in the Endoplasmic Reticulum. Journal of Biological Chemistry, 1998, 273, 32373-32376.	3.4	57
86	Superfolding of the Partially Unfolded Core-glycosylated Intermediate of Human P-glycoprotein into the Mature Enzyme Is Promoted by Substrate-induced Transmembrane Domain Interactions. Journal of Biological Chemistry, 1998, 273, 14671-14674.	3.4	87
87	[35] Mutational analysis of human P-glycoprotein. Methods in Enzymology, 1998, 292, 480-492.	1.0	16
88	Identification of Residues in the Drug-binding Site of Human P-glycoprotein Using a Thiol-reactive Substrate. Journal of Biological Chemistry, 1997, 272, 31945-31948.	3.4	129
89	Correction of Defective Protein Kinesis of Human P-glycoprotein Mutants by Substrates and Modulators. Journal of Biological Chemistry, 1997, 272, 709-712.	3.4	213
90	Drug-stimulated ATPase Activity of Human P-glycoprotein Requires Movement between Transmembrane Segments 6 and 12. Journal of Biological Chemistry, 1997, 272, 20986-20989.	3.4	91

#	Article	IF	CITATIONS
91	Disease-Associated Mutations in Cytoplasmic Loops 1 and 2 of Cystic Fibrosis Transmembrane Conductance Regulator Impede Processing or Opening of the Channelâ€. Biochemistry, 1997, 36, 11966-11974.	2.5	73
92	Cystic fibrosis: channel, catalytic, and folding properties of the CFTR protein. Journal of Bioenergetics and Biomembranes, 1997, 29, 429-442.	2.3	43
93	The Minimum Functional Unit of Human P-glycoprotein Appears to be a Monomer. Journal of Biological Chemistry, 1996, 271, 27488-27492.	3.4	51
94	Inhibition of Oxidative Cross-linking between Engineered Cysteine Residues at Positions 332 in Predicted Transmembrane Segments (TM) 6 and 975 in Predicted TM12 of Human P-glycoprotein by Drug Substrates. Journal of Biological Chemistry, 1996, 271, 27482-27487.	3.4	73
95	Disease-associated Mutations in the Fourth Cytoplasmic Loop of Cystic Fibrosis Transmembrane Conductance Regulator Compromise Biosynthetic Processing and Chloride Channel Activity. Journal of Biological Chemistry, 1996, 271, 15139-15145.	3.4	105
96	Cytoplasmic Loop Three of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Regulation of Chloride Channel Activity. Journal of Biological Chemistry, 1996, 271, 27493-27499.	3.4	93
97	Mutational Analysis of the Predicted First Transmembrane Segment of Each Homologous Half of Human P-glycoprotein Suggests That They Are Symmetrically Arranged in the Membrane. Journal of Biological Chemistry, 1996, 271, 15414-15419.	3.4	33
98	Expression of a Functionally Active Human Renal Sodium-Calcium Exchanger Lacking a Signal Sequence. Journal of Biological Chemistry, 1995, 270, 19345-19350.	3.4	21
99	Membrane Topology of a Cysteine-less Mutant of Human P-glycoprotein. Journal of Biological Chemistry, 1995, 270, 843-848.	3.4	234
100	Covalent Modification of Human P-glycoprotein Mutants Containing a Single Cysteine in Either Nucleotide-binding Fold Abolishes Drug-stimulated ATPase Activity. Journal of Biological Chemistry, 1995, 270, 22957-22961.	3.4	140
101	P-glycoprotein. Journal of Biological Chemistry, 1995, 270, 21839-21844.	3.4	114
102	Rapid Purification of Human P-glycoprotein Mutants Expressed Transiently in HEK 293 Cells by Nickel-Chelate Chromatography and Characterization of their Drug-stimulated ATPase Activities. Journal of Biological Chemistry, 1995, 270, 21449-21452.	3 . 4	158
103	Mutations to Amino Acids Located in Predicted Transmembrane Segment 6 (TM6) Modulate the Activity and Substrate Specificity of Human P-glycoprotein. Biochemistry, 1994, 33, 14049-14057.	2.5	126
104	Deletion of NH2â^'and COOH-terminal sequences destroys function of the Ca2+ATPase of rabbit fast-twitch skeletal muscle sarcoplasmic reticulum. FEBS Letters, 1993, 336, 168-170.	2.8	16
105	Expression and mutation of Ca2+ ATPases of the sarcoplasmic reticulum. Cytoskeleton, 1989, 14, 26-34.	4.4	19
106	Location of high affinity Ca2 +-binding sites within the predicted transmembrahe domain of the sarco-plasmic reticulum Ca2+-ATPase. Nature, 1989, 339, 476-478.	27.8	605
107	Expression of rubella virus cDNA coding for the structural proteins. Gene, 1988, 65, 23-30.	2.2	41
108	Nucleotide sequence andin vitroexpression of rubella virus 24S subgenomic messenger RNA encoding the structural proteins E1, E2, and C. Nucleic Acids Research, 1987, 15, 3041-3056.	14.5	115

TIP W Loo

#	ARTICLE	IF	CITATION
109	Detection of antibodies to individual proteins of rubella virus. Journal of Virological Methods, 1986, 13, 149-159.	2.1	19
110	Nucleotide sequence of the <i>pntA</i> and <i>pntB</i> genes encoding the pyridine nucleotide transhydrogenase of <i>Escherichia coli</i> FEBS Journal, 1986, 158, 647-653.	0.2	109
111	Structural analysis of a new GC-specific insertion element IS186. FEBS Letters, 1985, 192, 47-52.	2.8	27
112	Interaction of Escherichia coli F1-ATPase with dicyclohexylcarbodiimide-binding polypeptide. Biochimica Et Biophysica Acta - Biomembranes, 1983, 733, 274-282.	2.6	18
113	The DCCD-binding polypeptide is close to the F1 ATPase-binding site on the cytoplasmic surface of the cell membrane of Escherichia coli. Biochemical and Biophysical Research Communications, 1982, 106, 400-406.	2.1	25
114	The DCCD-binding polypeptide alone is insufficient for proton translocation through F0 in membranes of Escherichia, coli. Biochemical and Biophysical Research Communications, 1981, 103, 52-59.	2.1	28