Louis-Felix Nothias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/818947/publications.pdf

Version: 2024-02-01

136885 168321 19,469 51 32 citations h-index papers

g-index 70 70 70 20892 docs citations times ranked citing authors all docs

53

#	Article	IF	Citations
1	Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37, 852-857.	9.4	11,167
2	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.	9.4	2,802
3	Feature-based molecular networking in the GNPS analysis environment. Nature Methods, 2020, 17, 905-908.	9.0	650
4	Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nature Protocols, 2020, 15, 1954-1991.	5.5	344
5	Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nature Biotechnology, 2021, 39, 462-471.	9.4	317
6	Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy. Trends in Pharmacological Sciences, 2017, 38, 143-154.	4.0	250
7	MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites, 2019, 9, 144.	1.3	245
8	Propagating annotations of molecular networks using in silico fragmentation. PLoS Computational Biology, 2018, 14, e1006089.	1.5	242
9	Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation. Journal of Natural Products, 2018, 81, 758-767.	1.5	237
10	Dereplication of microbial metabolites through database search of mass spectra. Nature Communications, 2018, 9, 4035.	5.8	220
11	Dereplication of peptidic natural products through database search of mass spectra. Nature Chemical Biology, 2017, 13, 30-37.	3.9	184
12	Learning representations of microbe–metabolite interactions. Nature Methods, 2019, 16, 1306-1314.	9.0	184
13	Mass spectrometry searches using MASST. Nature Biotechnology, 2020, 38, 23-26.	9.4	160
14	NPClassifier: A Deep Neural Network-Based Structural Classification Tool for Natural Products. Journal of Natural Products, 2021, 84, 2795-2807.	1.5	131
15	Significance estimation for large scale metabolomics annotations by spectral matching. Nature Communications, 2017, 8, 1494.	5.8	128
16	Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nature Communications, 2021, 12, 3832.	5.8	119
17	A Convolutional Neural Network-Based Approach for the Rapid Annotation of Molecularly Diverse Natural Products. Journal of the American Chemical Society, 2020, 142, 4114-4120.	6.6	114
18	Bioactive Natural Products Prioritization Using Massive Multi-informational Molecular Networks. ACS Chemical Biology, 2017, 12, 2644-2651.	1.6	112

#	Article	IF	CITATIONS
19	Database-independent molecular formula annotation using Gibbs sampling through ZODIAC. Nature Machine Intelligence, 2020, 2, 629-641.	8.3	103
20	High-confidence structural annotation of metabolites absent from spectral libraries. Nature Biotechnology, 2022, 40, 411-421.	9.4	100
21	3D molecular cartography using LC–MS facilitated by Optimus and 'ili software. Nature Protocols, 2018, 13, 134-154.	5.5	85
22	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	3.9	81
23	ReDU: a framework to find and reanalyze public mass spectrometry data. Nature Methods, 2020, 17, 901-904.	9.0	79
24	Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nature Biotechnology, 2021, 39, 169-173.	9.4	78
25	Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nature Chemical Biology, 2021, 17, 146-151.	3.9	73
26	<i>Euphorbia dendroides</i> Latex as a Source of Jatrophane Esters: Isolation, Structural Analysis, Conformational Study, and Anti-CHIKV Activity. Journal of Natural Products, 2016, 79, 2873-2882.	1.5	52
27	Environmentally Friendly Procedure Based on Supercritical Fluid Chromatography and Tandem Mass Spectrometry Molecular Networking for the Discovery of Potent Antiviral Compounds from <i>Euphorbia semiperfoliata</i> . Journal of Natural Products, 2017, 80, 2620-2629.	1.5	51
28	MetaMiner: A Scalable Peptidogenomics Approach for Discovery of Ribosomal Peptide Natural Products with Blind Modifications from Microbial Communities. Cell Systems, 2019, 9, 600-608.e4.	2.9	46
29	Niche partitioning of a pathogenic microbiome driven by chemical gradients. Science Advances, 2018, 4, eaau1908.	4.7	40
30	Assessing Specialized Metabolite Diversity in the Cosmopolitan Plant Genus Euphorbia L Frontiers in Plant Science, 2019, 10, 846.	1.7	40
31	Evaluation of Jatrophane Esters from <i>Euphorbia</i> spp. as Modulators of <i>Candida albicans</i> Multidrug Transporters. Journal of Natural Products, 2017, 80, 479-487.	1.5	39
32	Isolation of Premyrsinane, Myrsinane, and Tigliane Diterpenoids from <i>Euphorbia pithyusa</i> Using a Chikungunya Virus Cell-Based Assay and Analogue Annotation by Molecular Networking. Journal of Natural Products, 2017, 80, 2051-2059.	1.5	37
33	Distinguishing the molecular diversity, nutrient content, and energetic potential of exometabolomes produced by macroalgae and reef-building corals \hat{A} . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	28
34	Antibiotic discovery is a walk in the park. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14477-14479.	3.3	24
35	Investigation of Premyrsinane and Myrsinane Esters in <i>Euphorbia cupanii</i> and <i>Euphobia pithyusa</i> with <i>MS2LDA</i> and Combinatorial Molecular Network Annotation Propagation. Journal of Natural Products, 2019, 82, 1459-1470.	1.5	24
36	Viscosin-like lipopeptides from frog skin bacteria inhibit Aspergillus fumigatus and Batrachochytrium dendrobatidis detected by imaging mass spectrometry and molecular networking. Scientific Reports, 2019, 9, 3019.	1.6	23

#	Article	IF	Citations
37	Feature-Based Molecular Networking Analysis of the Metabolites Produced by <i>In Vitro</i> Solid-State Fermentation Reveals Pathways for the Bioconversion of Epigallocatechin Gallate. Journal of Agricultural and Food Chemistry, 2020, 68, 7995-8007.	2.4	23
38	Genomic and Metabolomic Analysis of the Potato Common Scab Pathogen $\langle i \rangle$ Streptomyces scabiei $\langle i \rangle$. ACS Omega, 2021, 6, 11474-11487.	1.6	21
39	Before platelets: the production of platelet-activating factor during growth and stress in a basal marine organism. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181307.	1.2	20
40	Comparative Genomics and Metabolomics Analyses of Clavulanic Acid-Producing Streptomyces Species Provides Insight Into Specialized Metabolism. Frontiers in Microbiology, 2019, 10, 2550.	1.5	20
41	Tandem Mass Spectrometry Molecular Networking as a Powerful and Efficient Tool for Drug Metabolism Studies. Analytical Chemistry, 2022, 94, 1456-1464.	3.2	17
42	Assessing specialized metabolite diversity of Alnus species by a digitized LC–MS/MS data analysis workflow. Phytochemistry, 2020, 173, 112292.	1.4	15
43	Specialized Metabolites from Ribosome Engineered Strains of Streptomyces clavuligerus. Metabolites, 2021, 11, 239.	1.3	13
44	Nerpa: A Tool for Discovering Biosynthetic Gene Clusters of Bacterial Nonribosomal Peptides. Metabolites, 2021, 11, 693.	1.3	11
45	Comparative metabolomic analysis reveals shared and unique chemical interactions in sponge holobionts. Microbiome, 2022, 10, 22.	4.9	11
46	MEMO: Mass Spectrometry-Based Sample Vectorization to Explore Chemodiverse Datasets. Frontiers in Bioinformatics, 2022, 2, .	1.0	7
47	Identification of Four Amoebicidal Nontoxic Compounds by a Molecular Docking Screen of <i>Naegleria fowleri</i> Sterol î"8â^î"7-Isomerase and Phenotypic Assays. ACS Infectious Diseases, 2019, 5, 2029-2038.	1.8	6
48	Reply to: Examining microbe–metabolite correlations by linear methods. Nature Methods, 2021, 18, 40-41.	9.0	6
49	Metabolites from Microbes Isolated from the Skin of the Panamanian Rocket Frog Colostethus panamansis (Anura: Dendrobatidae). Metabolites, 2020, 10, 406.	1.3	4
50	Studying Charge Migration Fragmentation of Sodiated Precursor Ions in Collision-Induced Dissociation at the Library Scale. Journal of the American Society for Mass Spectrometry, 2021, 32, 180-186.	1.2	4
51	Chemical Gradients of Plant Substrates in an <i>Atta texana</i> Fungus Garden. MSystems, 2021, 6, e0060121.	1.7	2