Martial Duchamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8188888/publications.pdf

Version: 2024-02-01

88 papers 4,514 citations

28 h-index 66 g-index

101 all docs

101 docs citations

times ranked

101

8720 citing authors

#	Article	IF	Citations
1	Recovery Mechanisms in Aged Kesterite Solar Cells. ACS Applied Energy Materials, 2022, 5, 5404-5414.	5.1	6
2	Enhanced Spin Hall Effect in Sâ€Implanted Pt. Advanced Quantum Technologies, 2021, 4, .	3.9	15
3	Operando and in situ in a TEM imaging in a cryogenic temperature range. Microscopy and Microanalysis, 2021, 27, 386-387.	0.4	O
4	Challenges and Applications to <i>Operando</i> and <i>In Situ</i> TEM Imaging and Spectroscopic Capabilities in a Cryogenic Temperature Range. Accounts of Chemical Research, 2021, 54, 3125-3135.	15.6	13
5	Facet controlled anisotropic magnons in Y3Fe5O12 thin films. Applied Physics Letters, 2021, 119, .	3.3	6
6	Operando Direct Observation of Filament Formation in Resistive Switching Devices Enabled by a Topological Transformation Molecule. Nano Letters, 2021, 21, 9262-9269.	9.1	4
7	Real-Time Electron Nanoscopy of Photovoltaic Absorber Formation from Kesterite Nanoparticles. ACS Applied Energy Materials, 2020, 3, 122-128.	5.1	5
8	Multi-modal and multi-scale non-local means method to analyze spectroscopic datasets. Ultramicroscopy, 2020, 209, 112877.	1.9	6
9	Recrystallization-based grain boundary engineering of 316L stainless steel produced via selective laser melting. Acta Materialia, 2020, 200, 366-377.	7.9	132
10	Magnetoimpedance of Epitaxial Y ₃ Fe ₅ O ₁₂ (001) Thin Film in Low-Frequency Regime. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41802-41809.	8.0	8
11	Elastic distortion determining conduction in BiFeO ₃ phase boundaries. RSC Advances, 2020, 10, 27954-27960.	3.6	O
12	STEM electron beam-induced current measurements of organic-inorganic perovskite solar cells. Ultramicroscopy, 2020, 217, 113047.	1.9	7
13	Atomic resolution enabled STEM imaging of nanocrystals at cryogenic temperature. JPhys Materials, 2020, 3, 034006.	4.2	8
14	Generation of electron vortices using nonexact electric fields. Physical Review Research, 2020, 2, .	3.6	18
15	Innovative fabrication of low-cost kesterite solar cells for distributed energy applications. , 2020, , .		O
16	Investigation of the Oxidation Reaction of LiFePO4 Cathode Material using Environmental TEM. Microscopy and Microanalysis, 2019, 25, 1858-1859.	0.4	0
17	A diecast mineralization process forms the tough mantis shrimp dactyl club. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8685-8692.	7.1	33
18	Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13, 418-424.	31.4	970

#	Article	IF	Citations
19	Time-Resolved Observations of Liquid–Liquid Phase Separation at the Nanoscale Using <i>in Situ</i> Liquid Transmission Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 7202-7210.	13.7	69
20	Effect of TaN intermediate layer on the back contact reaction of sputter-deposited Cu poor Cu2ZnSnS4 and Mo. Applied Surface Science, 2019, 471, 277-288.	6.1	21
21	Largeâ€Area Atomic Layers of the Chargeâ€Densityâ€Wave Conductor TiSe ₂ . Advanced Materials, 2018, 30, 1704382.	21.0	60
22	Mechanical response of CH3NH3PbI3 nanowires. Applied Physics Letters, 2018, 112, .	3.3	15
23	Fine electron biprism on a Si-on-insulator chip for off-axis electron holography. Ultramicroscopy, 2018, 185, 81-89.	1.9	5
24	What Limits Mobility in Hydrogenated Indium Oxide?., 2018,,.		0
25	Design and fabrication of InAs/GaAs QD based intermediate band solar cells by quantum engineering. , 2018, , .		3
26	Atomic-scale quantification of charge densities in two-dimensional materials. Physical Review B, 2018, 98, .	3.2	36
27	Giant resistive switching in mixed phase BiFeO ₃ <i>via</i> phase population control. Nanoscale, 2018, 10, 17629-17637.	5.6	18
28	Exploring two dimensional Co0.33In2.67S2.29Se1.71 as alloy type negative electrode for Li-ion battery with olivine LiFePO4 cathode. Materials Today Energy, 2018, 9, 19-26.	4.7	2
29	Carrier scattering mechanisms limiting mobility in hydrogen-doped indium oxide. Journal of Applied Physics, 2018, 123, .	2.5	15
30	Aligned and Graded Typeâ€I Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. Advanced Energy Materials, 2018, 8, 1800185.	19.5	247
31	Quantum engineering InAs/GaAs single-junction concentrator solar cells (Conference Presentation). , 2018, , .		2
32	Microstructural characterization of Cr-doped (Bi,Sb) ₂ Te ₃ thin films. CrystEngComm, 2017, 19, 3633-3639.	2.6	6
33	Generation of electron vortex beams using line charges via the electrostatic Aharonov-Bohm effect. Ultramicroscopy, 2017, 181, 191-196.	1.9	16
34	Single crystalline superstructured stable single domain magnetite nanoparticles. Scientific Reports, 2017, 7, 45484.	3.3	48
35	Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nature Energy, 2017, 2, .	39.5	435
36	Quantum Engineering of InAs/GaAs Quantum Dot Based Intermediate Band Solar Cells. ACS Photonics, 2017, 4, 2745-2750.	6.6	64

#	Article	IF	Citations
37	Denoising Electron-energy Loss Data Using Non-local Means Filters. Microscopy and Microanalysis, 2017, 23, 106-107.	0.4	1
38	Enhancing the optoelectronic properties of amorphous zinc tin oxide by subgap defect passivation: A theoretical and experimental demonstration. Physical Review B, 2017, 95, .	3.2	31
39	Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe2. Ultramicroscopy, 2017, 178, 38-47.	1.9	23
40	Mapping atomic electric fields and charge densities by four-dimensional STEM. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C119-C119.	0.1	2
41	New experiments with a double crystal electron interferometer. EPJ Applied Physics, 2017, 78, 10701.	0.7	8
42	Measurement of Atomic Electric Fields by Scanning Transmission Electron Microscopy (STEM) Employing Ultrafast Detectors. Microscopy and Microanalysis, 2016, 22, 484-485.	0.4	1
43	Electric and Magnetic Field Mapping With the pnCCD (S)TEM Camera. Microscopy and Microanalysis, 2016, 22, 256-257.	0.4	0
44	Singleâ€Crystalline Wâ€Doped VO ₂ Nanobeams with Highly Reversible Electrical and Plasmonic Responses Near Room Temperature. Advanced Materials Interfaces, 2016, 3, 1600164.	3.7	60
45	$\langle i \rangle$ In situ $\langle i \rangle$ transmission electron microscopy of resistive switching in thin silicon oxide layers. Resolution and Discovery, 2016, 1, 27-33.	0.4	16
46	Strain and compositional fluctuations in Al0.81In0.19N/GaN heterostructures. Applied Physics Letters, 2016, 109, 132102.	3.3	4
47	Intrinsic electronic properties of high-quality wurtzite InN. Physical Review B, 2016, 94, .	3.2	8
48	Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)., 2016,,.		0
49	Effect of lanthanum doping on modulating the thermochromic properties of VO ₂ thin films. RSC Advances, 2016, 6, 48455-48461.	3.6	44
50	Vapor transport growth of MoS2 nucleated on SiO2 patterns and graphene flakes. Nano Research, 2016, 9, 3504-3514.	10.4	14
51	Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals. Inorganic Chemistry, 2016, 55, 8381-8386.	4.0	31
52	In Situ TEM Analysis of Organic–Inorganic Metal-Halide Perovskite Solar Cells under Electrical Bias. Nano Letters, 2016, 16, 7013-7018.	9.1	115
53	Zig-zag Self-assembly of Magnetic Octahedral Fe3O4 Nanocrystals using in situ Liquid Transmission Electron Microscopy. Microscopy and Microanalysis, 2016, 22, 36-37.	0.4	8
54	High Temperature Stability of Amorphous Zn-Sn-O Transparent Conductive Oxides Investigated by In Situ TEM and X-ray Diffraction. Microscopy and Microanalysis, 2016, 22, 1582-1583.	0.4	0

#	Article	IF	CITATIONS
55	Strategies for Doped Nanocrystalline Silicon Integration in Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 1132-1140.	2.5	54
56	Terbium-Doped VO ₂ Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance. Langmuir, 2016, 32, 759-764.	3.5	112
57	Tuning the Plasmonic Response up: Hollow Cuboid Metal Nanostructures. ACS Photonics, 2016, 3, 770-779.	6.6	49
58	Three-dimensional Surface Charge Reconstructions of Surface Plasmon Modes of Silver Right Bipyramids. Microscopy and Microanalysis, 2015, 21, 2225-2226.	0.4	0
59	Resonances of nanoparticles with poor plasmonic metal tips. Scientific Reports, 2015, 5, 17431.	3.3	42
60	Direct observation of doping incorporation pathways in self-catalytic GaMnAs nanowires. Journal of Applied Physics, 2015, 118 , .	2.5	9
61	GaN heterostructures with diamond and graphene. Semiconductor Science and Technology, 2015, 30, 114001.	2.0	5
62	STEM–EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering. Nanotechnology, 2015, 26, 075703.	2.6	29
63	Graphoepitaxy of Highâ€Quality GaN Layers on Graphene/6H–SiC. Advanced Materials Interfaces, 2015, 2, 1400230.	3.7	23
64	Eigenmode Tomography of Surface Charge Oscillations of Plasmonic Nanoparticles by Electron Energy Loss Spectroscopy. ACS Photonics, 2015, 2, 1628-1635.	6.6	51
65	On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films. Nanoscale, 2015, 7, 218-224.	5.6	17
66	Silicon-Light: a European project aiming at high efficiency thin film silicon solar cells on foil. EPJ Photovoltaics, 2014, 5, 55203.	1.6	0
67	The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy and Environmental Science, 2014, 7, 399-407.	30.8	965
68	Understanding the Role of Single Molecular ZnS Precursors in the Synthesis of In(Zn)P/ZnS Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18233-18242.	8.0	26
69	Analysis of InAs/GaAs quantum dot solar cells using Suns-V oc measurements. Solar Energy Materials and Solar Cells, 2014, 130, 241-245.	6.2	43
70	Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide. Ultramicroscopy, 2014, 145, 66-73.	1.9	12
71	Convenient Preparation of High-Quality Specimens for Annealing Experiments in the Transmission Electron Microscope. Microscopy and Microanalysis, 2014, 20, 1638-1645.	0.4	44
72	New progress in the fabrication of n–i–p micromorph solar cells for opaque substrates. Solar Energy Materials and Solar Cells, 2013, 114, 147-155.	6.2	29

#	Article	IF	CITATIONS
73	Combined model of non-conformal layer growth for accurate optical simulation of thin-film silicon solar cells. Solar Energy Materials and Solar Cells, 2013, 119, 59-66.	6.2	48
74	Effect of post-growth annealing on secondary phase formation in low-temperature-grown Mn-doped GaAs. Journal Physics D: Applied Physics, 2013, 46, 145309.	2.8	9
75	Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy. Journal of Applied Physics, $2013,114,.$	2.5	6
76	Compositional study of defects in microcrystalline silicon solar cells using spectral decomposition in the scanning transmission electron microscope. Applied Physics Letters, 2013, 102, .	3.3	20
77	Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells. Journal of Applied Physics, 2013, 113, .	2.5	7
78	EELS measurements of boron concentration profiles in p-a-Si and nip a-Si solar cells. Journal of Non-Crystalline Solids, 2012, 358, 2179-2182.	3.1	5
79	Quenching of TiO2 photo catalysis by silver nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 230, 10-14.	3.9	11
80	Mapping boron in silicon solar cells using electron energy-loss spectroscopy. Journal of Physics: Conference Series, 2011, 326, 012052.	0.4	1
81	Conventional and 360 degree electron tomography of a micro-crystalline silicon solar cell. Journal of Physics: Conference Series, 2011, 326, 012057.	0.4	1
82	Reflectance Improvement by Thermal Annealing of Sputtered Ag/ZnO Back Reflectors in a-Si:H Thin Film Silicon Solar Cells. Materials Research Society Symposia Proceedings, 2011, 1321, 63.	0.1	0
83	Production of high quality carbon nanotubes for less than \$1 per gram. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1236-1240.	0.8	16
84	Reinforcing multiwall carbon nanotubes by electron beam irradiation. Journal of Applied Physics, 2010, 108, 084314.	2.5	16
85	Controlled Positioning of Carbon Nanotubes by Dielectrophoresis: Insights into the Solvent and Substrate Role. ACS Nano, 2010, 4, 279-284.	14.6	85
86	Mechanical and electronic properties of vanadium oxide nanotubes. Journal of Applied Physics, 2009, 105, .	2.5	26
87	Synthesis and mechanical properties of carbon nanotubes produced by the water assisted CVD process. Physica Status Solidi (B): Basic Research, 2009, 246, 2457-2460.	1.5	38
88	Uniformly dispersed deposition of colloidal nanoparticles and nanowires by boiling. Applied Physics Letters, 2007, 91, 173112.	3.3	30