Laurence A Turka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8188615/publications.pdf

Version: 2024-02-01

304368 344852 3,519 37 22 36 h-index citations g-index papers 37 37 37 6288 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. Journal of Clinical Investigation, 2015, 125, 194-207.	3.9	562
2	Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nature Immunology, 2016, 17, 1459-1466.	7.0	402
3	Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nature Immunology, 2015, 16, 188-196.	7.0	347
4	Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet, The, 2020, 395, 1627-1639.	6.3	266
5	Immunometabolism of regulatory T cells. Nature Immunology, 2016, 17, 618-625.	7.0	259
6	The Chromatin-Modifying Enzyme Ezh2 Is Critical for the Maintenance of Regulatory T Cell Identity after Activation. Immunity, 2015, 42, 227-238.	6.6	253
7	Cancer-Associated PTEN Mutants Act in a Dominant-Negative Manner to Suppress PTEN Protein Function. Cell, 2014, 157, 595-610.	13.5	235
8	Adenovirus-mediated gene transfer into cold-preserved liver allografts: Survival pattern and unresponsiveness following transduction with CTLA4lg. Nature Medicine, 1998, 4, 194-200.	15.2	142
9	PTEN inhibits IL-2 receptor-mediated expansion of CD4+CD25+ Tregs. Journal of Clinical Investigation, 2006, 116, 2521-31.	3.9	130
10	Differential Roles of IL-2 Signaling in Developing versus Mature Tregs. Cell Reports, 2018, 25, 1204-1213.e4.	2.9	110
11	Therapeutic regulatory T-cell adoptive transfer ameliorates established murine chronic GVHD in a CXCR5-dependent manner. Blood, 2016, 128, 1013-1017.	0.6	95
12	Advances and challenges in immunotherapy for solid organ and hematopoietic stem cell transplantation. Science Translational Medicine, 2015, 7, 280rv2.	5.8	88
13	Immune response to enzyme replacement therapies in lysosomal storage diseases and the role of immune tolerance induction. Molecular Genetics and Metabolism, 2016, 117, 66-83.	0.5	64
14	Beta cell-specific CD8+ T cells maintain stem cell memory-associated epigenetic programs during type 1 diabetes. Nature Immunology, 2020, 21, 578-587.	7.0	63
15	B cells with immune-regulating function in transplantation. Nature Reviews Nephrology, 2014, 10, 389-397.	4.1	59
16	Cutting Edge: TGF-Î ² and Phosphatidylinositol 3-Kinase Signals Modulate Distinct Metabolism of Regulatory T Cell Subsets. Journal of Immunology, 2018, 201, 2215-2219.	0.4	58
17	Maintenance of CD4 T cell fitness through regulation of Foxo1. Nature Immunology, 2018, 19, 838-848.	7.0	49
18	Immunometabolism and PI(3)K Signaling As a Link between IL-2, Foxp3 Expression, and Suppressor Function in Regulatory T Cells. Frontiers in Immunology, 2018, 9, 69.	2.2	39

#	Article	IF	CITATIONS
19	The Untapped Opportunity and Challenge of Immunometabolism: A New Paradigm for Drug Discovery. Cell Metabolism, 2020, 31, 26-34.	7.2	34
20	The vimentin intermediate filament network restrains regulatory T cell suppression of graft-versus-host disease. Journal of Clinical Investigation, 2018, 128, 4604-4621.	3.9	32
21	A composite score associated with spontaneous operational tolerance in kidney transplant recipients. Kidney International, 2017, 91, 1473-1481.	2.6	31
22	Biomarkers of operational tolerance following kidney transplantation – The immune tolerance network studies of spontaneously tolerant kidney transplant recipients. Human Immunology, 2018, 79, 380-387.	1.2	30
23	Engineered red blood cells as an off-the-shelf allogeneic anti-tumor therapeutic. Nature Communications, 2021, 12, 2637.	5.8	25
24	Requirement for CD28 in Effector Regulatory T Cell Differentiation, CCR6 Induction, and Skin Homing. Journal of Immunology, 2015, 195, 4154-4161.	0.4	22
25	B Cells Drive Autoimmunity in Mice with CD28-Deficient Regulatory T Cells. Journal of Immunology, 2017, 199, 3972-3980.	0.4	21
26	Differential effects of 2-deoxy-D-glucose on in vitro expanded human regulatory T cell subsets. PLoS ONE, 2019, 14, e0217761.	1.1	21
27	Tumor Tolerance–Promoting Function of Regulatory T Cells Is Optimized by CD28, but Strictly Dependent on Calcineurin. Journal of Immunology, 2018, 200, 3647-3661.	0.4	17
28	Navigating T-Cell Immunometabolism in Transplantation. Transplantation, 2018, 102, 230-239.	0.5	14
29	Suppression of T-cell lymphomagenesis in mice requires PTEN phosphatase activity. Blood, 2015, 125, 852-855.	0.6	12
30	TIM4 Regulates the Anti-Islet Th2 Alloimmune Response. Cell Transplantation, 2015, 24, 1599-1614.	1.2	9
31	FOXP3-Positive Regulatory T Cells and Kidney AllograftÂTolerance. American Journal of Kidney Diseases, 2017, 69, 667-674.	2.1	9
32	Targeting PI3KÎ function for amelioration of murine chronic graft-versus-host disease. American Journal of Transplantation, 2019, 19, 1820-1830.	2.6	9
33	Regulatory T cell expressed MyD88 is critical for prolongation of allograft survival. Transplant International, 2016, 29, 930-940.	0.8	4
34	Ex vivo generation of regulatory T cells from liver transplant recipients using costimulation blockade. American Journal of Transplantation, 2021, , .	2.6	4
35	New approaches to diagnosis of rejection. Nature Reviews Nephrology, 2014, 10, 72-74.	4.1	2
36	Reply to Christakoudi and Hernandez-Fuentes: We agree-Let's move on. American Journal of Transplantation, 2018, 18, 273-273.	2.6	2

ARTICLE IF CITATIONS

The Innate Response to a Transplanted Organ., 2012,, 54-61. o