## Maciej Trejda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8188535/publications.pdf Version: 2024-02-01



MACIEL TREIDA

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Niobium rich SBA-15 materials – preparation, characterisation and catalytic activity. Microporous and Mesoporous Materials, 2008, 110, 271-278.                                                                          | 4.4  | 66        |
| 2  | Catalytic performance of niobium species in crystalline and amorphous solids—Gas and liquid phase oxidation. Applied Catalysis A: General, 2011, 391, 194-204.                                                           | 4.3  | 62        |
| 3  | The Role of BrÃ,nsted and Lewis Acid Sites in Acetalization of Glycerol over Modified Mesoporous<br>Cellular Foams. Journal of Physical Chemistry C, 2016, 120, 16699-16711.                                             | 3.1  | 62        |
| 4  | Development of niobium containing acidic catalysts for glycerol esterification. Catalysis Today, 2012, 187, 129-134.                                                                                                     | 4.4  | 55        |
| 5  | Template synthesis and characterisation of MCM-41 mesoporous molecular sieves containing various<br>transition metal elements—TME (Cu, Fe, Nb, V, Mo). Journal of Physics and Chemistry of Solids, 2004,<br>65, 571-581. | 4.0  | 54        |
| 6  | Methanol oxidation on VSiBEA zeolites: Influence of V content on the catalytic properties. Journal of Catalysis, 2011, 281, 169-176.                                                                                     | 6.2  | 53        |
| 7  | New catalysts for biodiesel additives production. Applied Catalysis B: Environmental, 2011, 103, 404-412.                                                                                                                | 20.2 | 48        |
| 8  | Nature of vanadium species in V substituted zeolites: A combined experimental and theoretical study.<br>Catalysis Today, 2008, 139, 221-226.                                                                             | 4.4  | 42        |
| 9  | New Nb and Ta–FAU zeolites—Direct synthesis, characterisation and surface properties. Catalysis<br>Today, 2010, 158, 170-177.                                                                                            | 4.4  | 39        |
| 10 | Physicochemical and catalytic properties of iron-doped silica—the effect of preparation and pretreatment methods. Journal of Catalysis, 2003, 219, 146-155.                                                              | 6.2  | 37        |
| 11 | Real-Time Raman Monitoring and Control of the Catalytic Acetalization of Glycerol with Acetone<br>over Modified Mesoporous Cellular Foams. Journal of Physical Chemistry C, 2014, 118, 10780-10791.                      | 3.1  | 35        |
| 12 | Iron Modified MCM-41 Materials Characterised by Methanol Oxidation and Sulphurisation Reactions.<br>Catalysis Letters, 2006, 108, 141-146.                                                                               | 2.6  | 29        |
| 13 | Gold, vanadium and niobium containing MCM-41 materials—Catalytic properties in methanol oxidation.<br>Catalysis Today, 2008, 139, 188-195.                                                                               | 4.4  | 28        |
| 14 | Development of basicity in mesoporous silicas and metallosilicates. Catalysis Science and Technology, 2017, 7, 5236-5248.                                                                                                | 4.1  | 27        |
| 15 | Organosilanes affecting the structure and formation of mesoporous cellular foams. Microporous and Mesoporous Materials, 2012, 155, 143-152.                                                                              | 4.4  | 26        |
| 16 | The production of biofuels additives on sulphonated MCF materials modified with Nb and Ta—Towards efficient solid catalysts of esterification. Applied Catalysis A: General, 2013, 467, 325-334.                         | 4.3  | 25        |
| 17 | The radical species and impurities present in mesoporous silicas as oxidation active centres.<br>Microporous and Mesoporous Materials, 2009, 120, 214-220.                                                               | 4.4  | 23        |
| 18 | lron containing mesoporous solids: preparation, characterisation, and surface properties. Comptes Rendus Chimie, 2005, 8, 635-654.                                                                                       | 0.5  | 20        |

Maciej Trejda

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nb-containing mesoporous materials of MCF type—Acidic and oxidative properties. Catalysis Today,<br>2008, 139, 196-201.                                                                                                         | 4.4 | 19        |
| 20 | The role of Nb in the formation of sulphonic species in SBA-15 and MCF functionalised with MPTMS. Catalysis Today, 2012, 192, 130-135.                                                                                          | 4.4 | 19        |
| 21 | Methanol Oxidation to Formaldehyde on VSiBEA Zeolite: A Combined DFT/vdW/Transition Path<br>Sampling and Experimental Study. Journal of Physical Chemistry C, 2015, 119, 13619-13631.                                           | 3.1 | 14        |
| 22 | Synthesis of solid acid catalysts for esterification with the assistance of elevated pressure.<br>Microporous and Mesoporous Materials, 2019, 278, 115-120.                                                                     | 4.4 | 13        |
| 23 | New iron containing mesoporous catalysts. Catalysis Today, 2005, 101, 109-116.                                                                                                                                                  | 4.4 | 12        |
| 24 | New phospho-silicate and niobo-phospho-silicate MCF materials modified with MPTMS – Structure, surface and catalytic properties. Microporous and Mesoporous Materials, 2013, 181, 88-98.                                        | 4.4 | 11        |
| 25 | Esterification processes based on functionalized mesoporous solids. Catalysis Today, 2015, 254, 104-110.                                                                                                                        | 4.4 | 11        |
| 26 | Characterisation of iron containing molecular sieves—the effect of T-element on Fe species. Studies in<br>Surface Science and Catalysis, 2002, 142, 1785-1792.                                                                  | 1.5 | 10        |
| 27 | Ca/MCF catalysts — The impact of niobium and material structure on basicity. Catalysis Today, 2019, 325, 11-17.                                                                                                                 | 4.4 | 10        |
| 28 | Various hexagonally ordered mesoporous silicas as supports for chromium species—The effect of<br>support on surface properties. Applied Catalysis A: General, 2009, 365, 135-140.                                               | 4.3 | 9         |
| 29 | Insight into the interaction of calcium species with mesoporous silica and niobiosilica. Materials<br>Research Bulletin, 2018, 97, 530-536.                                                                                     | 5.2 | 9         |
| 30 | Incorporation of group five elements into the faujasite structure. Studies in Surface Science and Catalysis, 2010, , 445-448.                                                                                                   | 1.5 | 7         |
| 31 | Preparation of two series of VxSiBeta zeolite catalysts with V centres in framework and<br>extra-framework positions and their application in selective oxidation of methanol. Applied Catalysis<br>A: General, 2019, 579, 1-8. | 4.3 | 7         |
| 32 | Comparative study of MCM-22 and MCM-56 modified with molybdenum – Impact of the metal on acidic and oxidative properties of zeolites. Microporous and Mesoporous Materials, 2014, 197, 185-193.                                 | 4.4 | 5         |
| 33 | Structure and Reactivity of Zeolites Containing Group Five Elements (V, Nb, Ta). Structure and Bonding, 2017, , 179-249.                                                                                                        | 1.0 | 4         |
| 34 | An efficient synthesis of acidic mesoporous materials. Catalysis Today, 2020, 354, 61-66.                                                                                                                                       | 4.4 | 4         |
| 35 | Ce and Ca/Nb doped Pd-mesocellular foam catalysts for gas-phase conversion of acetone to methyl isobutyl ketone. Microporous and Mesoporous Materials, 2021, 322, 111169.                                                       | 4.4 | 4         |
| 36 | Copper Supported on Ceria Mesocellular Foam Silica as an Effective Catalyst for Reductive<br>Condensation of Acetone to Methyl Isobutyl Ketone. ChemSusChem, 2022, 15, .                                                        | 6.8 | 4         |

Maciej Trejda

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | FTIR study of FE-doped MCM-41 mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2004, 154, 1490-1497.                                                                                             | 1.5 | 3         |
| 38 | Mesostructured cellular foams modified by niobium or tantalum and functionalized with<br>(3-mercaptopropyl)trimethoxysilane – Raman inspired reduction of synthesis time. Catalysis Today,<br>2015, 254, 111-118.      | 4.4 | 3         |
| 39 | Calcium and nitrogen species loaded into SBA-15 – a promising catalyst tested in Knoevenagel<br>condensation. Dalton Transactions, 2020, 49, 9781-9794.                                                                | 3.3 | 3         |
| 40 | The impact of Ce/Nb dopant ratio on basicity of MCF modified with calcium species. Catalysis<br>Communications, 2020, 142, 106045.                                                                                     | 3.3 | 3         |
| 41 | Insight into Active Centers and Anti-Coke Behavior of Niobium-Containing SBA-15 for Glycerol Dehydration. Catalysts, 2021, 11, 488.                                                                                    | 3.5 | 3         |
| 42 | Application of microwave radiation in the grafting of acidic sites on SBA-15 type material. Journal of Porous Materials, 2021, 28, 1261-1267.                                                                          | 2.6 | 3         |
| 43 | Relationship between basicity, reducibility and partial oxidation properties of chromium containing<br>MCM-41. RSC Advances, 2014, 4, 62940-62946.                                                                     | 3.6 | 2         |
| 44 | Impact of Cerium Oxide on the State and Hydrogenation Activity of Ruthenium Species Incorporated on<br>Mesocellular Foam Silica. Materials, 2022, 15, 4877.                                                            | 2.9 | 2         |
| 45 | Generation of iron active species in MCM-41 materials. Studies in Surface Science and Catalysis, 2005, 158, 829-836.                                                                                                   | 1.5 | 1         |
| 46 | Fascinating catalysis – Past, present and future. Catalysis Today, 2020, 354, 1-2.                                                                                                                                     | 4.4 | 1         |
| 47 | Towards Efficient Acidic Catalysts via Optimization of SO3H-Organosilane Immobilization on SBA-15<br>under Increased Pressure: Potential Applications in Gas and Liquid Phase Reactions. Materials, 2021, 14,<br>7226. | 2.9 | 1         |
| 48 | Spherical Silica Modified with Magnesium and Ruthenium—Synthesis, Characterization and Catalytic<br>Properties. Materials, 2021, 14, 7378.                                                                             | 2.9 | 1         |
| 49 | Iron Containing Mesoporous Solids: Preparation, Characterisation, and Surface Properties.<br>ChemInform, 2005, 36, no.                                                                                                 | 0.0 | 0         |
| 50 | The Impact of 3-(trihydroxysilyl)-1-propanesulfonic Acid Treatment on the State of Vanadium Incorporated on SBA-15 Matrix. Catalysts, 2021, 11, 397.                                                                   | 3.5 | 0         |