Ann Almgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8187958/publications.pdf

Version: 2024-02-01

		109321	85541
103	5,187	35	71
papers	citations	h-index	g-index
103	103	103	3831
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	MFIX-Exa: A path toward exascale CFD-DEM simulations. International Journal of High Performance Computing Applications, 2022, 36, 40-58.	3.7	17
2	The divergence of nearby trajectories in soft-sphere DEM. Particuology, 2022, 63, 1-8.	3.6	0
3	A coupled discontinuous Galerkin-Finite Volume framework for solving gas dynamics over embedded geometries. Journal of Computational Physics, 2022, 450, 110861.	3.8	7
4	Hurricaneâ€Like Vortices in Conditionally Unstable Moist Convection. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	1
5	In situ feature analysis for large-scale multiphase flow simulations. Journal of Computational Science, 2022, , 101773.	2.9	O
6	Massively parallel finite difference elasticity using block-structured adaptive mesh refinement with a geometric multigrid solver. Journal of Computational Physics, 2021, 427, 110065.	3.8	21
7	Feature Analysis, Tracking, and Data Reduction: An Application to Multiphase Reactor Simulation MFiX-Exa for <i>In-Situ</i> Use Case. Computing in Science and Engineering, 2021, 23, 75-82.	1.2	4
8	Modeling of a chain of three plasma accelerator stages with the WarpX electromagnetic PIC code on GPUs. Physics of Plasmas, 2021, 28, .	1.9	23
9	AMReX: Block-structured adaptive mesh refinement for multiphysics applications. International Journal of High Performance Computing Applications, 2021, 35, 508-526.	3.7	43
10	Nyx: A Massively Parallel AMR Code for Computational Cosmology. Journal of Open Source Software, 2021, 6, 3068.	4.6	6
11	Porting WarpX to GPU-accelerated platforms. Parallel Computing, 2021, 108, 102833.	2.1	25
12	Exascale applications: skin in the game. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190056.	3.4	53
13	Toward the modeling of chains of plasma accelerator stages with WarpX. Journal of Physics: Conference Series, 2020, 1596, 012059.	0.4	4
14	CASTRO: A Massively Parallel Compressible Astrophysics Simulation Code. Journal of Open Source Software, 2020, 5, 2513.	4.6	15
15	Modeling pyrotechnic explosions. AIP Conference Proceedings, 2020, , .	0.4	O
16	Preparing Nuclear Astrophysics for Exascale. , 2020, , .		5
17	An embedded boundary approach for efficient simulations of viscoplastic fluids in three dimensions. Physics of Fluids, 2019, 31, .	4.0	8
18	MAESTROeX: A Massively Parallel Low Mach Number Astrophysical Solver. Astrophysical Journal, 2019, 887, 212.	4.5	13

#	Article	IF	Citations
19	AMReX: a framework for block-structured adaptive mesh refinement. Journal of Open Source Software, 2019, 4, 1370.	4.6	217
20	MAESTROeX: A Massively Parallel Low Mach Number Astrophysical Solver. Journal of Open Source Software, 2019, 4, 1757.	4. 6	6
21	Asynchronous AMR on Multi-GPUs. Lecture Notes in Computer Science, 2019, , 113-123.	1.3	0
22	A hybrid adaptive low-Mach number/compressible method: Euler equations. Journal of Computational Physics, 2018, 372, 1027-1047.	3.8	2
23	Warp-X: A new exascale computing platform for beam–plasma simulations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 476-479.	1.6	68
24	Phase Asynchronous AMR Execution for Productive and Performant Astrophysical Flows. , 2018, , .		5
25	Toward Plasma Wakefield Simulations at Exascale. , 2018, , .		2
26	Highly parallelisable simulations of time-dependent viscoplastic fluid flow with structured adaptive mesh refinement. Physics of Fluids, 2018 , 30 , .	4.0	17
27	Navier-Stokes Characteristic Boundary Conditions Using Ghost Cells. , 2017, , .		0
28	A Hybrid Adaptive Low-Mach-Number/Compressible Method for the Euler Equations. , 2017, , .		0
29	Navier–Stokes Characteristic Boundary Conditions Using Ghost Cells. AIAA Journal, 2017, 55, 3399-3408.	2.6	20
30	Overlapping Data Transfers with Computation on GPU with Tiles. , 2017, , .		6
31	Nonintrusive AMR Asynchrony for Communication Optimization. Lecture Notes in Computer Science, 2017, , 682-694.	1.3	1
32	TiDA: High-Level Programming Abstractions for Data Locality Management. Lecture Notes in Computer Science, 2016, , 116-135.	1.3	11
33	Perilla: Metadata-Based Optimizations of an Asynchronous Runtime for Adaptive Mesh Refinement. , 2016, , .		6
34	LOW MACH NUMBER MODELING OF CONVECTION IN HELIUM SHELLS ON SUB-CHANDRASEKHAR WHITE DWARFS. II. BULK PROPERTIES OF SIMPLE MODELS. Astrophysical Journal, 2016, 827, 84.	4.5	15
35	WHITE DWARF MERGERS ON ADAPTIVE MESHES. I. METHODOLOGY AND CODE VERIFICATION. Astrophysical Journal, 2016, 819, 94.	4.5	26
36	Hot and turbulent gas in clusters. Monthly Notices of the Royal Astronomical Society, 2016, 459, 701-719.	4.4	17

#	Article	IF	CITATION
37	BoxLib with Tiling: An Adaptive Mesh Refinement Software Framework. SIAM Journal of Scientific Computing, 2016, 38, S156-S172.	2.8	35
38	In situ and in-transit analysis of cosmological simulations. Computational Astrophysics and Cosmology, 2016, 3, 4.	22.7	24
39	Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale. , 2016, , .		5
40	A Low Mach Number Model for Moist Atmospheric Flows. Journals of the Atmospheric Sciences, 2015, 72, 1605-1620.	1.7	8
41	The Lyman \hat{l}_{\pm} forest in optically thin hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3697-3724.	4.4	133
42	COMPARISONS OF TWO- AND THREE-DIMENSIONAL CONVECTION IN TYPE I X-RAY BURSTS. Astrophysical Journal, 2015, 807, 60.	4.5	23
43	Influence of adaptive mesh refinement and the hydro solver on shear-induced mass stripping in a minor-merger scenario. Astronomy and Computing, 2015, 9, 49-63.	1.7	8
44	THE DEFLAGRATION STAGE OF CHANDRASEKHAR MASS MODELS FOR TYPE Ia SUPERNOVAE. I. EARLY EVOLUTION. Astrophysical Journal, 2014, 782, 11.	4.5	36
45	Large-eddy simulations of isolated disc galaxies with thermal and turbulent feedback. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3407-3426.	4.4	16
46	Cosmological fluid mechanics with adaptively refined large eddy simulations. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3051-3077.	4.4	34
47	TWO-DIMENSIONAL SIMULATIONS OF PULSATIONAL PAIR-INSTABILITY SUPERNOVAE. Astrophysical Journal, 2014, 792, 28.	4.5	67
48	Low Mach Number Modeling of Stratified Flows. Springer Proceedings in Mathematics and Statistics, 2014, , 3-15.	0.2	3
49	PAIR INSTABILITY SUPERNOVAE OF VERY MASSIVE POPULATION III STARS. Astrophysical Journal, 2014, 792, 44.	4.5	52
50	s-Step Krylov Subspace Methods as Bottom Solvers for Geometric Multigrid. , 2014, , .		13
51	A Numerical Study of Methods for Moist Atmospheric Flows: Compressible Equations. Monthly Weather Review, 2014, 142, 4269-4283.	1.4	11
52	THE GENERAL RELATIVISTIC INSTABILITY SUPERNOVA OF A SUPERMASSIVE POPULATION III STAR. Astrophysical Journal, 2014, 790, 162.	4.5	54
53	A survey of high level frameworks in block-structured adaptive mesh refinement packages. Journal of Parallel and Distributed Computing, 2014, 74, 3217-3227.	4.1	112
54	MULTIDIMENSIONAL MODELING OF TYPE I X-RAY BURSTS. II. TWO-DIMENSIONAL CONVECTION IN A MIXED H/He ACCRETOR. Astrophysical Journal, 2014, 788, 115.	4.5	23

#	Article	IF	CITATIONS
55	CARBON DEFLAGRATION IN TYPE Ia SUPERNOVA. I. CENTRALLY IGNITED MODELS. Astrophysical Journal, 2013, 771, 58.	4.5	30
56	Numerical approaches for multidimensional simulations of stellar explosions. Astronomy and Computing, 2013, 3-4, 70-78.	1.7	16
57	LOW MACH NUMBER MODELING OF CORE CONVECTION IN MASSIVE STARS. Astrophysical Journal, 2013, 773, 137.	4.5	35
58	On the Use of Higher-Order Projection Methods for Incompressible Turbulent Flow. SIAM Journal of Scientific Computing, 2013, 35, B25-B42.	2.8	18
59	CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. III. MULTIGROUP RADIATION HYDRODYNAMICS. Astrophysical Journal, Supplement Series, 2013, 204, 7.	7.7	48
60	Nyx: A MASSIVELY PARALLEL AMR CODE FOR COMPUTATIONAL COSMOLOGY. Astrophysical Journal, 2013, 765, 39.	4.5	192
61	LOW MACH NUMBER MODELING OF CONVECTION IN HELIUM SHELLS ON SUB-CHANDRASEKHAR WHITE DWARFS. I. METHODOLOGY. Astrophysical Journal, 2013, 764, 97.	4.5	18
62	Fates of the most massive primordial stars. , 2012, , .		0
63	Low Mach number models in computational astrophysics. , 2012, , .		0
64	Conservative Initial Mapping For Multidimensional Simulations of Stellar Explosions. Journal of Physics: Conference Series, 2012, 402, 012024.	0.4	2
65	Optimization of geometric multigrid for emerging multi- and manycore processors. , 2012, , .		33
66	A deferred correction coupling strategy for low Mach number flow with complex chemistry. Combustion Theory and Modelling, 2012, 16, 1053-1088.	1.9	44
67	Shear instability of internal solitary waves in Euler fluids with thin pycnoclines. Journal of Fluid Mechanics, 2012, 710, 324-361.	3.4	13
68	An adaptive mesh refinement algorithm for compressible two-phase flow in porous media. Computational Geosciences, 2012, 16, 577-592.	2.4	35
69	The hydrodynamic origin of neutron star kicks. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1805-1812.	4.4	61
70	A Three-Dimensional, Unsplit Godunov Method for Scalar Conservation Laws. SIAM Journal of Scientific Computing, 2011, 33, 2039-2062.	2.8	6
71	INDUCED ROTATION IN THREE-DIMENSIONAL SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE: IMPLICATIONS FOR PULSAR SPINS. Astrophysical Journal, 2011, 732, 57.	4.5	53
72	THE CONVECTIVE PHASE PRECEDING TYPE Ia SUPERNOVAE. Astrophysical Journal, 2011, 740, 8.	4.5	43

#	Article	IF	CITATIONS
73	MULTIDIMENSIONAL MODELING OF TYPE I X-RAY BURSTS. I. TWO-DIMENSIONAL CONVECTION PRIOR TO THE OUTBURST OF A PURE ⁴ He ACCRETOR. Astrophysical Journal, 2011, 728, 118.	4.5	35
74	An unsplit, higher-order Godunov method using quadratic reconstruction for advection in two dimensions. Communications in Applied Mathematics and Computational Science, 2011, 6, 27-61.	1.8	4
75	The potential role of spatial dimension in the neutrino-driving mechanism of core-collapse supernova explosions. Computer Physics Communications, 2011, 182, 1764-1766.	7.5	2
76	Multidimensional simulations of pair-instability supernovae. Computer Physics Communications, 2011, 182, 254-256.	7.5	17
77	CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS. Astrophysical Journal, Supplement Series, 2011, 196, 20.	7.7	71
78	THE NUCLEOSYNTHETIC IMPRINT OF 15–40 <i>M</i> _{â~%} PRIMORDIAL SUPERNOVAE ON METAL-P STARS. Astrophysical Journal, 2010, 709, 11-26.	OOR 4.5	113
79	Two-Dimensional Simulations of Pair-Instability Supernovae. , 2010, , .		0
80	THREE-DIMENSIONAL SIMULATIONS OF RAYLEIGH-TAYLOR MIXING IN CORE-COLLAPSE SUPERNOVAE. Astrophysical Journal, 2010, 723, 353-363.	4.5	68
81	High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Advances in Water Resources, 2010, 33, 443-455.	3.8	279
82	MAESTRO: AN ADAPTIVE LOW MACH NUMBER HYDRODYNAMICS ALGORITHM FOR STELLAR FLOWS. Astrophysical Journal, Supplement Series, 2010, 188, 358-383.	7.7	68
83	DIMENSION AS A KEY TO THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVA EXPLOSIONS. Astrophysical Journal, 2010, 720, 694-703.	4.5	163
84	CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. I. HYDRODYNAMICS AND SELF-GRAVITY. Astrophysical Journal, 2010, 715, 1221-1238.	4.5	211
85	LOW MACH NUMBER MODELING OF TYPE IA SUPERNOVAE. IV. WHITE DWARF CONVECTION. Astrophysical Journal, 2009, 704, 196-210.	4.5	63
86	A parallel second-order adaptive mesh algorithm for incompressible flow in porous media. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 4633-4654.	3.4	21
87	A New Low Mach Number Approach in Astrophysics. Computing in Science and Engineering, 2009, 11, 24-33.	1.2	4
88	Low Mach Number Modeling of Type Ia Supernovae. III. Reactions. Astrophysical Journal, 2008, 684, 449-470.	4.5	42
89	Type la supernovae. Journal of Physics: Conference Series, 2007, 78, 012081.	0.4	7
90	Low Mach Number Modeling of Type Ia Supernovae. II. Energy Evolution. Astrophysical Journal, 2006, 649, 927-938.	4.5	47

#	Article	lF	CITATION
91	Simulation of lean premixed turbulent combustion. Journal of Physics: Conference Series, 2006, 46, 1-15.	0.4	11
92	Low Mach Number Modeling of Type Ia Supernovae. I. Hydrodynamics. Astrophysical Journal, 2006, 637, 922-936.	4.5	116
93	Small-Scale Processes and Entrainment in a Stratocumulus Marine Boundary Layer. Journals of the Atmospheric Sciences, 2000, 57, 567-581.	1.7	17
94	A New Look at the Pseudo-Incompressible Solution to Lamb's Problem of Hydrostatic Adjustment. Journals of the Atmospheric Sciences, 2000, 57, 995-998.	1.7	11
95	Approximate Projection Methods: Part I. Inviscid Analysis. SIAM Journal of Scientific Computing, 2000, 22, 1139-1159.	2.8	88
96	An Adaptive Level Set Approach for Incompressible Two-Phase Flows. Journal of Computational Physics, 1999, 148, 81-124.	3.8	560
97	A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier–Stokes Equations. Journal of Computational Physics, 1998, 142, 1-46.	3.8	430
98	A Cartesian Grid Projection Method for the Incompressible Euler Equations in Complex Geometries. SIAM Journal of Scientific Computing, 1997, 18, 1289-1309.	2.8	97
99	A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows. Journal of Computational Physics, 1997, 130, 269-282.	3.8	418
100	A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection. SIAM Journal of Scientific Computing, 1996, 17, 358-369.	2.8	156
101	A Fast Adaptive Vortex Method in Three Dimensions. Journal of Computational Physics, 1994, 113, 177-200.	3.8	47
102	An adaptive projection method for the incompressible Euler equations. , 1993, , .		15
103	TECHNIQUES FOR INTEGRATING QUALITATIVE REASONING AND SYMBOLIC COMPUTATION IN ENGINEERING	2.6	38