
Paula Gonçalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8187860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14539-14544.	7.1	568
2	Natural Populations of <i>Saccharomyces kudriavzevii</i> in Portugal Are Associated with Oak Bark and Are Sympatric with <i>S. cerevisiae</i> and <i>S. paradoxus</i> . Applied and Environmental Microbiology, 2008, 74, 2144-2152.	3.1	287
3	A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum. Nature Communications, 2014, 5, 4044.	12.8	214
4	Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts. Current Biology, 2016, 26, 2750-2761.	3.9	207
5	A population genomics insight into the Mediterranean origins of wine yeast domestication. Molecular Ecology, 2015, 24, 5412-5427.	3.9	186
6	Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature, 2010, 464, 54-58.	27.8	147
7	Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose–H+ symporter. Biochemical Journal, 2006, 395, 543-549.	3.7	140
8	Population structure and reticulate evolution of <i><scp>S</scp>accharomyces eubayanus</i> and its lagerâ€brewing hybrids. Molecular Ecology, 2014, 23, 2031-2045.	3.9	128
9	Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Research, 2009, 9, 511-525.	2.3	122
10	FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H+ symporter. Microbiology (United Kingdom), 2010, 156, 3754-3761.	1.8	120
11	Genomics and the making of yeast biodiversity. Current Opinion in Genetics and Development, 2015, 35, 100-109.	3.3	105
12	Maltotriose Utilization by Industrial Saccharomyces Strains: Characterization of a New Member of the α-Glucoside Transporter Family. Applied and Environmental Microbiology, 2005, 71, 5044-5049.	3.1	82
13	Evidence of Natural Hybridization in Brazilian Wild Lineages of <i>Saccharomyces cerevisiae</i> . Genome Biology and Evolution, 2016, 8, 317-329.	2.5	79
14	Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production. Biotechnology for Biofuels, 2017, 10, 78.	6.2	78
15	Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species. PLoS ONE, 2011, 6, e20739.	2.5	76
16	Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nature Ecology and Evolution, 2019, 3, 1576-1586.	7.8	76
17	<i>FSY1</i> , a Novel Gene Encoding a Specific Fructose/H ⁺ Symporter in the Type Strain of <i>Saccharomyces carlsbergensis</i> . Journal of Bacteriology, 2000, 182, 5628-5630.	2.2	67
18	Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. ELife, 2018. 7	6.0	67

Paula Gonçalves

#	Article	IF	CITATIONS
19	Ffz1, a new transporter specific for fructose from Zygosaccharomyces bailii. Microbiology (United) Tj ETQq1	0.784314 r	gBŢ <i>Į</i> Overloc
20	A Deviation from the Bipolar-Tetrapolar Mating Paradigm in an Early Diverged Basidiomycete. PLoS Genetics, 2010, 6, e1001052.	3.5	55
21	Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae. Molecular Microbiology, 1998, 30, 603-613.	2.5	50
22	Multiple Rounds of Artificial Selection Promote Microbe Secondary Domestication—The Case of Cachaça Yeasts. Genome Biology and Evolution, 2018, 10, 1939-1955.	2.5	50
23	Extensive Intra-Kingdom Horizontal Gene Transfer Converging on a Fungal Fructose Transporter Gene. PLoS Genetics, 2013, 9, e1003587.	3.5	47
24	Adaptive divergence in wine yeasts and their wild relatives suggests a prominent role for introgressions and rapid evolution at noncoding sites. Molecular Ecology, 2017, 26, 2167-2182.	3.9	44
25	Starting up yeast glycolysis. Trends in Microbiology, 1998, 6, 314-319.	7.7	42
26	ldentification of Mating Type Genes in the Bipolar Basidiomycetous Yeast <i>Rhodosporidium toruloides</i> : First Insight into the <i>MAT</i> Locus Structure of the <i>Sporidiobolales</i> . Eukaryotic Cell, 2008, 7, 1053-1061.	3.4	36
27	Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited tremellomycete: Phaffia rhodozyma. BMC Genomics, 2016, 17, 901.	2.8	35
28	The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology (United Kingdom), 2008, 154, 1646-1655.	1.8	34
29	A Quasi-Domesticate Relic Hybrid Population of Saccharomyces cerevisiae × S. paradoxus Adapted to Olive Brine. Frontiers in Genetics, 2019, 10, 449.	2.3	34
30	Differential regulation by glucose and fructose of a gene encoding a specific fructose/H+ symporter inSaccharomyces sensu stricto yeasts. Yeast, 2004, 21, 519-530.	1.7	31
31	Evidence for maintenance of sex determinants but not of sexual stages in red yeasts, a group of early diverged basidiomycetes. BMC Evolutionary Biology, 2011, 11, 249.	3.2	30
32	Evolution of Mating Systems in Basidiomycetes and the Genetic Architecture Underlying Mating-Type Determination in the Yeast <i>Leucosporidium scottii</i> . Genetics, 2015, 201, 75-89.	2.9	29
33	The <i>Wickerhamiella/Starmerella</i> clade—A treasure trove for the study of the evolution of yeast metabolism. Yeast, 2020, 37, 313-320.	1.7	27
34	Fsy1, the sole hexose-proton transporter characterized in Saccharomyces yeasts, exhibits a variable fructose:H+ stoichiometry. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 201-207.	2.6	26
35	Genetic Dissection of Sexual Reproduction in a Primary Homothallic Basidiomycete. PLoS Genetics, 2016, 12, e1006110.	3.5	26
36	Stepwise Functional Evolution in a Fungal Sugar Transporter Family. Molecular Biology and Evolution, 2016, 33, 352-366.	8.9	26

Paula Gonçalves

#	Article	IF	CITATIONS
37	Multilayered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22219-22228.	7.1	25
38	Sex in the cold: taxonomic reorganization of psychrotolerant yeasts in the order Leucosporidiales. FEMS Yeast Research, 2015, 15, fov019.	2.3	21
39	A New Pathway for Mannitol Metabolism in Yeasts Suggests a Link to the Evolution of Alcoholic Fermentation. Frontiers in Microbiology, 2019, 10, 2510.	3.5	21
40	Derepression of a baker's yeast strain for maltose utilization is associated with severe deregulation of HXT gene expression. Journal of Applied Microbiology, 2011, 110, 364-374.	3.1	18
41	Living and Thriving on the Skin: <i>Malassezia</i> Genomes Tell the Story. MBio, 2013, 4, e00117-13.	4.1	15
42	Biogeography and Ecology of the Genus Saccharomyces. , 2017, , 131-153.		10
43	The Untapped Australasian Diversity of Astaxanthin-Producing Yeasts with Biotechnological Potential—Phaffia australis sp. nov. and Phaffia tasmanica sp. nov Microorganisms, 2020, 8, 1651.	3.6	9
44	Functionality of the Paracoccidioides Mating $\hat{I}\pm$ -Pheromone-Receptor System. PLoS ONE, 2012, 7, e47033.	2.5	8
45	Draft Genome Sequence of <i>Sporidiobolus salmonicolor</i> CBS 6832, a Red-Pigmented Basidiomycetous Yeast. Genome Announcements, 2015, 3, .	0.8	6
46	Multiple Pathways to Homothallism in Closely Related Yeast Lineages in the Basidiomycota. MBio, 2021, 12, .	4.1	5
47	Contrasting Strategies for Sucrose Utilization in a Floral Yeast Clade. MSphere, 2022, 7, e0003522.	2.9	4
48	Horizontal gene transfer in yeasts. Current Opinion in Genetics and Development, 2022, 76, 101950.	3.3	4
49	White wine grape pomace as a suitable carbon source for lipid and carotenoid production by fructophilic Rhodorotula babjevae. Journal of Applied Microbiology, 2022, 133, 656-664.	3.1	2