
## Caroline Ann Masiello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8187623/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 2011, 43, 1812-1836.                                                                                                                                    | 8.8  | 3,514     |
| 2  | New directions in black carbon organic geochemistry. Marine Chemistry, 2004, 92, 201-213.                                                                                                                                        | 2.3  | 664       |
| 3  | Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature, 2005, 436, 538-541.                                                                                                                 | 27.8 | 521       |
| 4  | Comparison of quantification methods to measure fireâ€derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochemical Cycles, 2007, 21, . | 4.9  | 483       |
| 5  | Black Carbon in Deep-Sea Sediments. Science, 1998, 280, 1911-1913.                                                                                                                                                               | 12.6 | 444       |
| 6  | New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 2014, 66, 176-185.                                                                                                                              | 5.7  | 412       |
| 7  | Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 2012, 41, 34-43.                                                                                                                    | 5.7  | 394       |
| 8  | Cycling and composition of organic matter in terrestrial and marine ecosystems. Marine Chemistry, 2004, 92, 39-64.                                                                                                               | 2.3  | 328       |
| 9  | Temperature Sensitivity of Black Carbon Decomposition and Oxidation. Environmental Science &<br>Technology, 2010, 44, 3324-3331.                                                                                                 | 10.0 | 314       |
| 10 | Controls on black carbon storage in soils. Global Biogeochemical Cycles, 2007, 21, .                                                                                                                                             | 4.9  | 284       |
| 11 | Biochar in climate change mitigation. Nature Geoscience, 2021, 14, 883-892.                                                                                                                                                      | 12.9 | 263       |
| 12 | Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biology, 2016, 22, 76-91.                                                                                                                   | 9.5  | 256       |
| 13 | Physical Disintegration of Biochar: An Overlooked Process. Environmental Science and Technology<br>Letters, 2014, 1, 326-332.                                                                                                    | 8.7  | 245       |
| 14 | Reburial of fossil organic carbon in marine sediments. Nature, 2004, 427, 336-339.                                                                                                                                               | 27.8 | 231       |
| 15 | Aromaticity and degree of aromatic condensation of char. Organic Geochemistry, 2015, 78, 135-143.                                                                                                                                | 1.8  | 207       |
| 16 | Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE, 2017, 12, e0179079.                                                                                                        | 2.5  | 200       |
| 17 | Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments. PLoS ONE, 2014, 9, e108340.                                                                          | 2.5  | 199       |
| 18 | Weathering controls on mechanisms of carbon storage in grassland soils. Global Biogeochemical<br>Cycles, 2004, 18, n/a-n/a.                                                                                                      | 4.9  | 194       |

CAROLINE ANN MASIELLO

| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation. Engineering, 2016, 2, 426-437.                          | 6.7  | 188       |
| 20 | Carbon isotope geochemistry of the Santa Clara River. Global Biogeochemical Cycles, 2001, 15, 407-416.                                                                  | 4.9  | 175       |
| 21 | Biochar and Microbial Signaling: Production Conditions Determine Effects on Microbial Communication. Environmental Science & amp; Technology, 2013, 47, 11496-11503.    | 10.0 | 174       |
| 22 | Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures. Journal of Hydrology, 2016, 533, 461-472.       | 5.4  | 149       |
| 23 | Multiple Controls on the Chemical and Physical Structure of Biochars. Industrial & Engineering<br>Chemistry Research, 2012, 51, 3587-3597.                              | 3.7  | 145       |
| 24 | Earthworm avoidance of biochar can be mitigated by wetting. Soil Biology and Biochemistry, 2011, 43, 1732-1737.                                                         | 8.8  | 136       |
| 25 | Biochar physico-chemical properties as affected by environmental exposure. Science of the Total Environment, 2016, 563-564, 237-246.                                    | 8.0  | 110       |
| 26 | Aged black carbon in marine sediments and sinking particles. Geophysical Research Letters, 2014, 41, 2427-2433.                                                         | 4.0  | 94        |
| 27 | Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Scientific Reports, 2017, 7, 11233.        | 3.3  | 93        |
| 28 | Nitrogen, biochar, and mycorrhizae: Alteration of the symbiosis and oxidation of the char surface.<br>Soil Biology and Biochemistry, 2013, 58, 248-254.                 | 8.8  | 90        |
| 29 | White-Rot Basidiomycete-Mediated Decomposition of C <sub>60</sub> Fullerol. Environmental Science<br>& Technology, 2009, 43, 3162-3168.                                 | 10.0 | 89        |
| 30 | Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons.<br>Environmental Science & Technology, 2016, 50, 2498-2506.                | 10.0 | 89        |
| 31 | Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio. Journal of Geophysical Research, 2008, 113, .                | 3.3  | 82        |
| 32 | Soil organic matter attenuates the efficacy of flavonoid-based plant-microbe communication. Science<br>Advances, 2020, 6, eaax8254.                                     | 10.3 | 60        |
| 33 | An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil<br>Biology and Biochemistry, 2006, 38, 1077-1082.                     | 8.8  | 59        |
| 34 | Topographic controls on black carbon accumulation in Alaskan black spruce forest soils:<br>implications for organic matter dynamics. Biogeochemistry, 2010, 100, 39-56. | 3.5  | 56        |
| 35 | Organic and black carbon13C and14C through the Santa Monica Basin sediment oxic-anoxic transition.<br>Geophysical Research Letters, 2003, 30, .                         | 4.0  | 55        |
| 36 | Measurement of soil carbon oxidation state and oxidative ratio by <sup>13</sup> C nuclear magnetic resonance. Journal of Geophysical Research, 2009, 114, .             | 3.3  | 55        |

CAROLINE ANN MASIELLO

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Charcoal Disrupts Soil Microbial Communication through a Combination of Signal Sorption and Hydrolysis. ACS Omega, 2016, 1, 226-233.                                                                       | 3.5  | 54        |
| 38 | An NMR study of porous rock and biochar containing organic material. Microporous and Mesoporous<br>Materials, 2013, 178, 94-98.                                                                            | 4.4  | 50        |
| 39 | Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2. Clobal Change Biology, 2006, 12, 260-271.                                             | 9.5  | 48        |
| 40 | Dynamics of decadally cycling carbon in subsurface soils. Journal of Geophysical Research, 2012, 117, .                                                                                                    | 3.3  | 48        |
| 41 | Controls on the origin and cycling of riverine dissolved inorganic carbon in the Brazos River, Texas.<br>Biogeochemistry, 2011, 104, 275-291.                                                              | 3.5  | 46        |
| 42 | Policy support for biochar: Review and recommendations. GCB Bioenergy, 2019, 11, 364-380.                                                                                                                  | 5.6  | 41        |
| 43 | Hydrocarbons in Lake Washington Sediments. A 25-Year Retrospective in an Urban Lake. Environmental<br>Science & Technology, 2004, 38, 431-439.                                                             | 10.0 | 40        |
| 44 | Estimating the oxidative ratio of the global terrestrial biosphere carbon. Biogeochemistry, 2013, 115, 23-32.                                                                                              | 3.5  | 40        |
| 45 | Translating New Synthetic Biology Advances for Biosensing Into the Earth and Environmental Sciences. Frontiers in Microbiology, 2020, 11, 618373.                                                          | 3.5  | 40        |
| 46 | Sources of CO2 evasion from two subtropical rivers in North America. Biogeochemistry, 2010, 100, 211-225.                                                                                                  | 3.5  | 39        |
| 47 | Distributions of dissolved organic and inorganic carbon and radiocarbon in the eastern North<br>Pacific continental margin. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 689-713. | 1.4  | 36        |
| 48 | Physical controls on dissolved inorganic radiocarbon variability in the California Current. Deep-Sea<br>Research Part II: Topical Studies in Oceanography, 1998, 45, 617-642.                              | 1.4  | 34        |
| 49 | Toward a "Molecular Thermometer―to Estimate the Charring Temperature of Wildland Charcoals<br>Derived from Different Biomass Sources. Environmental Science & Technology, 2013, 47,<br>11490-11495.        | 10.0 | 34        |
| 50 | Final recommendations for reference materials in black carbon analysis. Eos, 2003, 84, 582-582.                                                                                                            | 0.1  | 33        |
| 51 | Species-specific measurements of ectomycorrhizal turnover under N-fertilization: combining isotopic and genetic approaches. Oecologia, 2004, 138, 419-425.                                                 | 2.0  | 33        |
| 52 | Fire in the Ocean. Science, 2013, 340, 287-288.                                                                                                                                                            | 12.6 | 33        |
| 53 | Charring and non-additive chemical reactions during ramped pyrolysis: Applications to the characterization of sedimentary and soil organic material. Organic Geochemistry, 2014, 77, 106-114.              | 1.8  | 30        |
| 54 | Biochar interferes with kiwifruit Fe-nutrition in calcareous soil. Geoderma, 2016, 272, 10-19.                                                                                                             | 5.1  | 29        |

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Anhydrosugars as tracers in the Earth system. Biogeochemistry, 2019, 146, 209-256.                                                                                                               | 3.5  | 29        |
| 56 | Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal Mass and Isotopic Data. Environmental Science & amp; Technology, 2015, 49, 14057-14064.            | 10.0 | 28        |
| 57 | Soil Carbon and Nitrogen Responses to Nitrogen Fertilizer and Harvesting Rates in Switchgrass<br>Cropping Systems. Bioenergy Research, 2017, 10, 456-464.                                        | 3.9  | 25        |
| 58 | Biochemical Suitability of Crop Residues for Cellulosic Ethanol: Disincentives to Nitrogen<br>Fertilization in Corn Agriculture. Environmental Science & Technology, 2011, 45, 2013-2020.        | 10.0 | 24        |
| 59 | Volatile Gas Production by Methyl Halide Transferase: An In Situ Reporter Of Microbial Gene<br>Expression In Soil. Environmental Science & Technology, 2016, 50, 8750-8759.                      | 10.0 | 24        |
| 60 | Ratiometric Gas Reporting: A Nondisruptive Approach To Monitor Gene Expression in Soils. ACS<br>Synthetic Biology, 2018, 7, 903-911.                                                             | 3.8  | 24        |
| 61 | Valuing the Air Quality Effects of Biochar Reductions on Soil NO Emissions. Environmental Science<br>& Technology, 2017, 51, 9856-9863.                                                          | 10.0 | 23        |
| 62 | Tree taxa and pyrolysis temperature interact to control the efficacy of pyrogenic organic matter formation. Biogeochemistry, 2016, 130, 103-116.                                                 | 3.5  | 22        |
| 63 | Forest soil carbon oxidation state and oxidative ratio responses to elevated CO 2. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1797-1811.                                      | 3.0  | 19        |
| 64 | Effect of environmental exposure on charcoal density and porosity in a boreal forest. Science of the<br>Total Environment, 2017, 592, 316-325.                                                   | 8.0  | 18        |
| 65 | Effect of freeze-thaw cycling on grain size of biochar. PLoS ONE, 2018, 13, e0191246.                                                                                                            | 2.5  | 18        |
| 66 | Shortâ€īerm Changes in Physical and Chemical Properties of Soil Charcoal Support Enhanced Landscape<br>Mobility. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3098-3107.        | 3.0  | 16        |
| 67 | Quick burial at sea. Nature, 2007, 450, 360-361.                                                                                                                                                 | 27.8 | 15        |
| 68 | Water cost savings from soil biochar amendment: A spatial analysis. GCB Bioenergy, 2021, 13, 133-142.                                                                                            | 5.6  | 13        |
| 69 | Nutrient Transport in Soils Amended with Biochar: A Transient Model with Two Stationary Phases and<br>Intraparticle Diffusion. Industrial & Engineering Chemistry Research, 2015, 54, 4123-4135. | 3.7  | 12        |
| 70 | First interactions with the hydrologic cycle determine pyrogenic carbon's fate in the Earth system.<br>Earth Surface Processes and Landforms, 2020, 45, 2394-2398.                               | 2.5  | 12        |
| 71 | Controls on the oxidative ratio of net primary production in agricultural ecosystems.<br>Biogeochemistry, 2014, 121, 581-594.                                                                    | 3.5  | 11        |
| 72 | A Split Methyl Halide Transferase AND Gate That Reports by Synthesizing an Indicator Gas. ACS<br>Synthetic Biology, 2020, 9, 3104-3113.                                                          | 3.8  | 10        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Seasonal dynamics of CO2 profiles across a soil chronosequence, Santa Cruz, California. Applied<br>Geochemistry, 2011, 26, S132-S134.                                                                                           | 3.0 | 9         |
| 74 | Plant–fungal symbiosis affects litter decomposition during primary succession. Oikos, 2017, 126, 801-811.                                                                                                                       | 2.7 | 9         |
| 75 | Regional background O <sub>3</sub> and<br>NO <sub><i>x</i></sub> in the<br>Houston–Galveston–Brazoria (TX) region: a decadal-scale perspective. Atmospheric Chemistry and<br>Physics. 2017. 17. 6565-6581.                      | 4.9 | 8         |
| 76 | Plant species, not climate, controls aboveground biomass O <sub>2</sub> :CO <sub>2</sub> exchange<br>ratios in deciduous and coniferous ecosystems. Journal of Geophysical Research G: Biogeosciences,<br>2017, 122, 2314-2324. | 3.0 | 7         |
| 77 | Nondestructive Chemical Sensing within Bulk Soil Using 1000 Biosensors Per Gram of Matrix. ACS Synthetic Biology, 2022, 11, 2372-2383.                                                                                          | 3.8 | 7         |
| 78 | Organic geochemical approaches to identifying formation processes for middens and charcoal-rich features. Organic Geochemistry, 2016, 94, 1-11.                                                                                 | 1.8 | 4         |
| 79 | Interdisciplinary Intercomparison of Black Carbon Analysis in Soil and Sediment. Eos, 2007, 88, 344.                                                                                                                            | 0.1 | 3         |
| 80 | The Apparent Respiratory Quotient of Soils and Tree Stems and the Processes That Control It. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .                                                                    | 3.0 | 3         |
| 81 | A zero-dimensional view of atmospheric degradation of levoglucosan (LEVCHEM_v1) using numerical chamber simulations. Geoscientific Model Development, 2021, 14, 907-921.                                                        | 3.6 | 1         |