Andrew Donald C Maccoll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8187615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predation, group size and mortality in a cooperative mongoose, Suricata suricatta. Journal of Animal Ecology, 1999, 68, 672-683.	2.8	328
2	Precipitation drives global variation in natural selection. Science, 2017, 355, 959-962.	12.6	267
3	The ecological causes of evolution. Trends in Ecology and Evolution, 2011, 26, 514-522.	8.7	228
4	Costs of cooperative behaviour in suricates (Suricata suricatta). Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 185-190.	2.6	223
5	Stability and Instability in Ungulate Populations: An Empirical Analysis. American Naturalist, 1997, 149, 195-219.	2.1	217
6	Population Fluctuations, Reproductive Costs and Life-History Tactics in Female Soay Sheep. Journal of Animal Ecology, 1996, 65, 675.	2.8	180
7	Local genetic structure in red grouse (Lagopus lagopus scoticus): evidence from microsatellite DNA markers. Molecular Ecology, 1998, 7, 1645-1654.	3.9	172
8	DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science, 2019, 363, 81-84.	12.6	162
9	Densityâ€Dependent Variation in Lifetime Breeding Success and Natural and Sexual Selection in Soay Rams. American Naturalist, 1999, 154, 730-746.	2.1	139
10	Mate retention, harassment, and the evolution of ungulate leks. Behavioral Ecology, 1992, 3, 234-242.	2.2	132
11	Helpers increase long-term but not short-term productivity in cooperatively breeding long-tailed tits. Behavioral Ecology, 2004, 15, 1-10.	2.2	114
12	Temporal Variation in Fitness Payoffs Promotes Cooperative Breeding in Longâ€īailed Tits Aegithalos caudatus. American Naturalist, 2002, 160, 186-194.	2.1	110
13	HERITABILITY OF PARENTAL EFFORT IN A PASSERINE BIRD. Evolution; International Journal of Organic Evolution, 2003, 57, 2191-2195.	2.3	104
14	Reproduction and survival of suricates (Suricata suricatta) in the southern Kalahari. African Journal of Ecology, 1999, 37, 69-80.	0.9	102
15	Parasite burdens differ between sympatric threeâ€spined stickleback species. Ecography, 2009, 32, 153-160.	4.5	69
16	Determinants of lifetime fitness in a cooperative breeder, the longâ€ŧailed tit Aegithalos caudatus. Journal of Animal Ecology, 2004, 73, 1137-1148.	2.8	68
17	Sharing of caring: nestling provisioning behaviour of long-tailed tit, Aegithalos caudatus, parents and helpers. Animal Behaviour, 2003, 66, 955-964.	1.9	66
18	What Are the Environmental Determinants of Phenotypic Selection? A Meta-analysis of Experimental Studies. American Naturalist. 2017. 190. 363-376.	2.1	60

#	Article	IF	CITATIONS
19	Spatial arrangement of kin affects recruitment success in young male red grouse. Oikos, 2000, 90, 261-270.	2.7	58
20	Predictable genome-wide sorting of standing genetic variation during parallel adaptation to basic versus acidic environments in stickleback fish. Evolution Letters, 2019, 3, 28-42.	3.3	41
21	Intercontinental genomic parallelism in multiple three-spined stickleback adaptive radiations. Nature Ecology and Evolution, 2021, 5, 251-261.	7.8	41
22	MATRILINEAL GENETIC STRUCTURE AND FEMALE-MEDIATED GENE FLOW IN RED GROUSE (LAGOPUS LAGOPUS) Evolution, 2000, 54, 279.) Tj ETQq0 2.3	0 0 rgBT /Ov 39
23	Temporal changes in kin structure through a population cycle in a territorial bird, the red grouse <i>Lagopus lagopus scoticus</i> . Molecular Ecology, 2008, 17, 2544-2551.	3.9	37
24	Geographical location influences the composition of the gut microbiota in wild house mice (Mus) Tj ETQq0 0 0 r	gBT_/Overl	oc <u>g</u> 10 Tf 50
25	The evolutionary ecology of dwarfism in threeâ€spined sticklebacks. Journal of Animal Ecology, 2013, 82, 642-652.	2.8	34
26	The ecology of an adaptive radiation of threeâ€spined stickleback from North Uist, Scotland. Molecular Ecology, 2016, 25, 4319-4336.	3.9	29
27	Divergent resistance to a monogenean flatworm among threeâ€spined stickleback populations. Functional Ecology, 2011, 25, 217-226.	3.6	28
28	Measuring the immune system of the threeâ€spined stickleback – investigating natural variation by quantifying immune expression in the laboratory and the wild. Molecular Ecology Resources, 2016, 16, 701-713.	4.8	28
29	Parasites may contribute to â€~magic trait' evolution in the adaptive radiation of three-spined sticklebacks, Gasterosteus aculeatus (Gasterosteiformes: Gasterosteidae). Biological Journal of the Linnean Society, 0, 96, 425-433.	1.6	27
30	Parasites can cause selection against migrants following dispersal between environments. Functional Ecology, 2010, 24, 847-856.	3.6	26
31	Consistent differences in macroparasite community composition among populations of three-spined sticklebacks, <i>Gasterosteus aculeatus</i> L. Parasitology, 2012, 139, 1478-1491.	1.5	23
32	The effects of castration, sex ratio and population density on social segregation and habitat use in Soay sheep. Behavioral Ecology and Sociobiology, 2006, 59, 694-703.	1.4	22
33	Inappropriate analysis does not reveal the ecological causes of evolution of stickleback armour: a critique of Spence etÂal. 2013. Ecology and Evolution, 2014, 4, 3509-3513.	1.9	19
34	Admixture between Ancient Lineages, Selection, and the Formation of Sympatric Stickleback Species-Pairs. Molecular Biology and Evolution, 2019, 36, 2481-2497.	8.9	19
35	The pattern of poaching signs in Ugalla Game Reserve, western Tanzania. African Journal of Ecology, 2014, 52, 543-551.	0.9	13
36	Parasites contribute to ecologically dependent postmating isolation in the adaptive radiation of three-spined stickleback. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160691.	2.6	11

#	Article	IF	CITATIONS
37	No evidence of local adaptation of immune responses to Gyrodactylus in three-spined stickleback () Tj ETQq1 1 C	.784314 rg	gðt /Overloc
38	Spatial and temporal variation in macroparasite communities of three-spined stickleback. Parasitology, 2017, 144, 436-449.	1.5	11
39	Immune state is associated with natural dietary variation in wild mice <i>Mus musculus domesticus</i> . Functional Ecology, 2019, 33, 1425-1435.	3.6	11
40	MATRILINEAL GENETIC STRUCTURE AND FEMALE-MEDIATED GENE FLOW IN RED GROUSE (LAGOPUS LAGOPUS) Evolution, 2000, 54, 279-289.	Tj ETQq0 (2.3	0 0 rgBT /Ov 10
41	Eda haplotypes in three-spined stickleback are associated with variation in immune gene expression. Scientific Reports, 2017, 7, 42677.	3.3	10
42	Distribution of common stickleback parasites on North Uist, Scotland, in relation to ecology and host traits. Zoology, 2016, 119, 395-402.	1.2	9
43	Spatial distribution of genetic relatedness in a moorland population of red grouse (Lagopus lagopus) Tj ETQq1 1	0.784314 1.6	rgBT /Overlo
44	STASIS IN THE MORPH RATIO CLINE IN THE BANANAQUIT ON GRENADA, WEST INDIES. Condor, 2003, 105, 821.	1.6	8
45	Abiotic environmental variation drives virulence evolution in a fish host–parasite geographic mosaic. Functional Ecology, 2017, 31, 2138-2146.	3.6	8
46	Strong neutral genetic differentiation in a host, but not in its parasite. Infection, Genetics and Evolution, 2016, 44, 261-271.	2.3	7
47	A geneticsâ€based approach confirms immune associations with life history across multiple populations of an aquatic vertebrate (<i>Gasterosteus aculeatus</i>). Molecular Ecology, 2018, 27, 3174-3191.	3.9	7
48	Relationships between immune gene expression and circulating cytokine levels in wild house mice. Ecology and Evolution, 2020, 10, 13860-13871.	1.9	7
49	Temporal Variation in Fitness Payoffs Promotes Cooperative Breeding in Long-Tailed Tits Aegithalos caudatus. American Naturalist, 2002, 160, 186.	2.1	6
50	A benthic predatory fish does not cause selection on armour traits in three-spined stickleback Gasterosteus aculeatus (Gasterosteiformes: Gasterosteidae). Biological Journal of the Linnean Society, 2011, 104, 877-885.	1.6	5
51	Melanocortin-1-receptor (MC1R) variation is not associated with parasite burden in a neotropical bird, the bananaquit (Coereba flaveola). Biological Journal of the Linnean Society, 2013, 108, 882-888.	1.6	5
52	Legal subsistence hunting trends in the Ugalla ecosystem of western Tanzania. European Journal of Wildlife Research, 2014, 60, 371-376.	1.4	5
53	Prior exposure to long-day photoperiods alters immune responses and increases susceptibility to parasitic infection in stickleback. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201017.	2.6	5
54	Courtship behavior, nesting microhabitat, and assortative mating in sympatric stickleback species pairs. Ecology and Evolution, 2021, 11, 1741-1755.	1.9	5

#	Article	IF	CITATIONS
55	HERITABILITY OF PARENTAL EFFORT IN A PASSERINE BIRD. Evolution; International Journal of Organic Evolution, 2003, 57, 2191.	2.3	4
56	Significant effects of season and bird age on use of coppice woodland by songbirds. Ibis, 2014, 156, 561-575.	1.9	4
57	The maintenance of standing genetic variation: Gene flow vs. selective neutrality in Atlantic stickleback fish. Molecular Ecology, 2022, 31, 811-821.	3.9	4
58	Internal embryonic development in a non-copulatory, egg-laying teleost, the three-spined stickleback, Gasterosteus aculeatus. Scientific Reports, 2019, 9, 2395.	3.3	3
59	Response to Comment on "Precipitation drives global variation in natural selection― Science, 2018, 359, .	12.6	2
60	Otolith development in wild populations of stickleback: Jones & Hynes method does not apply to most populations. Journal of Fish Biology, 2018, 93, 272-281.	1.6	2
61	Habitat correlates of Eurasian Woodcock Scolopax rusticola abundance in a declining resident population. Journal of Ornithology, 2018, 159, 955-965.	1.1	2
62	Stasis in the Morph Ratio Cline in the Bananaquit on Grenada, West Indies. Condor, 2003, 105, 821-825.	1.6	1
63	The story of O: reply to Moya-Laraño. Trends in Ecology and Evolution, 2012, 27, 140.	8.7	1
64	Flywayâ€scale analysis reveals that the timing of migration in wading birds is becoming later. Ecology and Evolution, 2021, 11, 14135-14145.	1.9	1