
Christine Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8187497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenomenology and classification of dystonia: A consensus update. Movement Disorders, 2013, 28, 863-873.	3.9	1,754
2	Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurology, The, 2008, 7, 583-590.	10.2	1,340
3	Parkinson's disease. Lancet, The, 2021, 397, 2284-2303.	13.7	1,176
4	Genetics of Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a008888-a008888.	6.2	1,026
5	Parkin and PINK1 mitigate STING-induced inflammation. Nature, 2018, 561, 258-262.	27.8	905
6	<i>LRRK2</i> G2019S as a Cause of Parkinson's Disease in Ashkenazi Jews. New England Journal of Medicine, 2006, 354, 424-425.	27.0	661
7	Mitochondrial Parkin Recruitment Is Impaired in Neurons Derived from Mutant PINK1 Induced Pluripotent Stem Cells. Journal of Neuroscience, 2011, 31, 5970-5976.	3.6	348
8	PINK1 Loss-of-Function Mutations Affect Mitochondrial Complex I Activity via NdufA10 Ubiquinone Uncoupling. Science, 2014, 344, 203-207.	12.6	300
9	Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lancet Neurology, The, 2007, 6, 652-662.	10.2	290
10	LRRK2 in Parkinson disease: challenges of clinical trials. Nature Reviews Neurology, 2020, 16, 97-107.	10.1	281
11	<scp>N</scp> omenclature of genetic movement disorders: <scp>R</scp> ecommendations of the international <scp>P</scp> arkinson and movement disorder society task force. Movement Disorders, 2016, 31, 436-457.	3.9	228
12	Genotypeâ€Phenotype Relations for the Parkinson's Disease Genes <i>Parkin</i> , <i>PINK1</i> , <i>DJ1:</i> MDSGene Systematic Review. Movement Disorders, 2018, 33, 730-741.	3.9	215
13	Phosphatase and Tensin Homolog (PTEN)-induced Putative Kinase 1 (PINK1)-dependent Ubiquitination of Endogenous Parkin Attenuates Mitophagy. Journal of Biological Chemistry, 2013, 288, 2223-2237.	3.4	199
14	Mutations in THAP1 (DYT6) and generalised dystonia with prominent spasmodic dysphonia: a genetic screening study. Lancet Neurology, The, 2009, 8, 447-452.	10.2	194
15	Parkinson disease, 10 years after its genetic revolution: Multiple clues to a complex disorder. Neurology, 2007, 69, 2093-2104.	1.1	191
16	Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell, 2018, 172, 897-909.e21.	28.9	163
17	The genetics of Parkinson disease: implications for neurological care. Nature Clinical Practice Neurology, 2006, 2, 136-146.	2.5	153
18	Primary Familial Brain Calcification With Known Gene Mutations. JAMA Neurology, 2015, 72, 460.	9.0	144

#	Article	IF	CITATIONS
19	Mutant Parkin Impairs Mitochondrial Function and Morphology in Human Fibroblasts. PLoS ONE, 2010, 5, e12962.	2.5	140
20	PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset parkinsonism. European Journal of Human Genetics, 2005, 13, 1086-1093.	2.8	132
21	<scp>COVID</scp> â€19 Vaccineâ€Associated Cerebral Venous Thrombosis in Germany. Annals of Neurology, 2021, 90, 627-639.	5.3	122
22	Genotypeâ€phenotype relations for the Parkinson's disease genes SNCA, LRRK2, VPS35: MDSGene systematic review. Movement Disorders, 2018, 33, 1857-1870.	3.9	120
23	Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients. Human Molecular Genetics, 2010, 19, 3124-3137.	2.9	117
24	Short- and long-term outcome of chronic pallidal neurostimulation in monogenic isolated dystonia. Neurology, 2015, 84, 895-903.	1.1	117
25	Analysis of blood-based gene expression in idiopathic Parkinson disease. Neurology, 2017, 89, 1676-1683.	1.1	112
26	A Missense Mutation in KCTD17 Causes Autosomal Dominant Myoclonus-Dystonia. American Journal of Human Genetics, 2015, 96, 938-947.	6.2	109
27	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	27.8	108
28	Mitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism. Brain, 2020, 143, 3041-3051.	7.6	105
29	The Gly2019Ser mutation in LRRK2is not fully penetrant in familial Parkinson's disease: the GenePD study. BMC Medicine, 2008, 6, 32.	5.5	102
30	Mitochondria and Parkinson's Disease: Clinical, Molecular, and Translational Aspects. Journal of Parkinson's Disease, 2021, 11, 45-60.	2.8	100
31	Next-Generation Phenotyping Using the <i>Parkin</i> Example. JAMA Neurology, 2013, 70, 1186.	9.0	99
32	Update on the Genetics of Dystonia. Current Neurology and Neuroscience Reports, 2017, 17, 26.	4.2	98
33	Genetics of Parkinson disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 147, 211-227.	1.8	96
34	Genome-wide survival study identifies a novel synaptic locus and polygenic score for cognitive progression in Parkinson's disease. Nature Genetics, 2021, 53, 787-793.	21.4	82
35	Genotype–Phenotype Relations for Isolated Dystonia Genes: <scp>MDSGene</scp> Systematic Review. Movement Disorders, 2021, 36, 1086-1103.	3.9	74
36	New insights into the genetics of X-linked dystonia-parkinsonism (XDP, DYT3). European Journal of Human Genetics, 2015, 23, 1334-1340.	2.8	73

#	Article	IF	CITATIONS
37	Fixing the broken system of genetic locus symbols. Neurology, 2012, 78, 1016-1024.	1.1	70
38	Mutations in <i>GNAL</i> . JAMA Neurology, 2014, 71, 490.	9.0	70
39	Genetic and Environmental Factors in <scp>P</scp> arkinson's Disease Converge on Immune Function and Inflammation. Movement Disorders, 2021, 36, 25-36.	3.9	69
40	Deep brain stimulation for dystonia: a novel perspective on the value of genetic testing. Journal of Neural Transmission, 2017, 124, 417-430.	2.8	68
41	A hexanucleotide repeat modifies expressivity of Xâ€linked dystonia parkinsonism. Annals of Neurology, 2019, 85, 812-822.	5.3	67
42	Hereditary parkinsonism: Parkinson disease lookâ€alikes—An algorithm for clinicians to " <i>PARK</i> ― genes and beyond. Movement Disorders, 2009, 24, 2042-2058.	3.9	62
43	The genetic nomenclature of recessive cerebellar ataxias. Movement Disorders, 2018, 33, 1056-1076.	3.9	61
44	An integrated transcriptomics and proteomics analysis reveals functional endocytic dysregulation caused by mutations in LRRK2. Neurobiology of Disease, 2019, 127, 512-526.	4.4	58
45	Parkinson's Disease Subtypes: Critical Appraisal and Recommendations. Journal of Parkinson's Disease, 2021, 11, 395-404.	2.8	56
46	Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele. Brain, 2012, 135, 1128-1140.	7.6	54
47	Launching the movement disorders society genetic mutation database (MDSGene). Movement Disorders, 2016, 31, 607-609.	3.9	54
48	Risk of spread in adult-onset isolated focal dystonia: a prospective international cohort study. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 314-320.	1.9	50
49	The Rostock International Parkinson's Disease (<scp>ROPAD</scp>) Study: Protocol and Initial Findings. Movement Disorders, 2021, 36, 1005-1010.	3.9	50
50	Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force – An Update. Movement Disorders, 2022, 37, 905-935.	3.9	49
51	Identification and functional analysis of novel THAP1 mutations. European Journal of Human Genetics, 2012, 20, 171-175.	2.8	48
52	Cardiolipin promotes electron transport between ubiquinone and complex I to rescue <i>PINK1</i> deficiency. Journal of Cell Biology, 2017, 216, 695-708.	5.2	48
53	Dystonia and Tremor. Neurology, 2021, 96, e563-e574.	1.1	46
54	Complications of nasal and pharyngeal swabs: a relevant challenge of the COVID-19 pandemic?. European Respiratory Journal, 2021, 57, 2004004.	6.7	45

#	Article	IF	CITATIONS
55	Translation of Oppenheim's 1911 paper on dystonia. Movement Disorders, 2013, 28, 851-862.	3.9	43
56	Basal ganglia and cerebellar pathology in X-linked dystonia-parkinsonism. Brain, 2018, 141, 2995-3008.	7.6	41
57	The curious case of phenocopies in families with genetic Parkinson's disease. Movement Disorders, 2011, 26, 1793-1802.	3.9	40
58	Clinical and demographic characteristics related to onset site and spread of cervical dystonia. Movement Disorders, 2016, 31, 1874-1882.	3.9	39
59	Clinical neuroimaging and electrophysiological assessment of three <i>DYT6</i> dystonia families. Movement Disorders, 2010, 25, 2405-2412.	3.9	38
60	Dystonia updates: definition, nomenclature, clinical classification, and etiology. Journal of Neural Transmission, 2021, 128, 395-404.	2.8	38
61	Frequency of heterozygous Parkin mutations in healthy subjects: Need for careful prospective follow-up examination of mutation carriers. Parkinsonism and Related Disorders, 2009, 15, 425-429.	2.2	37
62	Evidence of TAF1 dysfunction in peripheral models of X-linked dystonia-parkinsonism. Cellular and Molecular Life Sciences, 2016, 73, 3205-3215.	5.4	37
63	Striosomal dysfunction affects behavioral adaptation but not impulsivity—Evidence from Xâ€ŀinked dystoniaâ€parkinsonism. Movement Disorders, 2017, 32, 576-584.	3.9	37
64	Rare Variants in Specific Lysosomal Genes Are Associated With Parkinson's Disease. Movement Disorders, 2020, 35, 1245-1248.	3.9	37
65	Parkinson's Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by <scp>2â€Hydroxypropylâ€I²â€€yclodextrin</scp> Treatment. Movement Disorders, 2022, 37, 80-94.	3.9	37
66	The protective effect of LRRK2 p.R1398H on risk of Parkinson's disease is independent of MAPT and SNCA variants. Neurobiology of Aging, 2014, 35, 266.e5-266.e14.	3.1	36
67	Utility and implications of exome sequencing in earlyâ€onset Parkinson's disease. Movement Disorders, 2019, 34, 133-137.	3.9	36
68	Association of Pallidal Neurostimulation and Outcome Predictors With X-linked Dystonia Parkinsonism. JAMA Neurology, 2019, 76, 211.	9.0	36
69	Biological effects of the PINK1 c.1366C>T mutation: implications in Parkinson disease pathogenesis. Neurogenetics, 2007, 8, 103-109.	1.4	35
70	Genome editing in induced pluripotent stem cells rescues <i>TAF1</i> levels in Xâ€linked dystoniaâ€parkinsonism. Movement Disorders, 2018, 33, 1108-1118.	3.9	35
71	An omics-based strategy using coenzyme Q10 in patients with Parkinson's disease: concept evaluation in a double-blind randomized placebo-controlled parallel group trial. Neurological Research and Practice, 2019, 1, 31.	2.0	35
72	Genotype–Phenotype Relations in Primary Familial Brain Calcification: Systematic <scp>MDSGene</scp> Review. Movement Disorders, 2021, 36, 2468-2480.	3.9	35

#	Article	IF	CITATIONS
73	Unraveling Cellular Phenotypes of Novel <i>TorsinA/TOR1A</i> Mutations. Human Mutation, 2014, 35, 1114-1122.	2.5	34
74	Identifying genetic modifiers of age-associated penetrance in X-linked dystonia-parkinsonism. Nature Communications, 2021, 12, 3216.	12.8	34
75	Ceramide accumulation induces mitophagy and impairs β-oxidation in PINK1 deficiency. Proceedings of the United States of America, 2021, 118, .	7.1	34
76	MDSGene: Closing Data Gaps in Genotype-Phenotype Correlations of Monogenic Parkinson's Disease. Journal of Parkinson's Disease, 2018, 8, S25-S30.	2.8	33
77	Cohort Profile: A population-based cohort to study non-motor symptoms in parkinsonism (EPIPARK). International Journal of Epidemiology, 2013, 42, 128-128k.	1.9	32
78	<scp><i>EIF2AK2</i></scp> Missense Variants Associated with Early Onset Generalized Dystonia. Annals of Neurology, 2021, 89, 485-497.	5.3	32
79	Genomewide Association Studies of <scp><i>LRRK2</i></scp> Modifiers of Parkinson's Disease. Annals of Neurology, 2021, 90, 76-88.	5.3	30
80	The Basal Ganglia Striosomes Affect the Modulation of Conflicts by Subliminal Information—Evidence from X-Linked Dystonia Parkinsonism. Cerebral Cortex, 2018, 28, 2243-2252.	2.9	29
81	Non-motor phenotype of dopa-responsive dystonia and quality of life assessment. Parkinsonism and Related Disorders, 2014, 20, 428-431.	2.2	28
82	Age at Onset of <scp>LRRK2</scp> p. <scp>Gly2019Ser</scp> Is Related to Environmental and Lifestyle Factors. Movement Disorders, 2020, 35, 1854-1858.	3.9	28
83	Parkin Deficiency Impairs Mitochondrial <scp>DNA</scp> Dynamics and Propagates Inflammation. Movement Disorders, 2022, 37, 1405-1415.	3.9	28
84	Using global team science to identify genetic parkinson's disease worldwide. Annals of Neurology, 2019, 86, 153-157.	5.3	26
85	A Mendelian randomization study investigating the causal role of inflammation on Parkinson's disease. Brain, 2022, 145, 3444-3453.	7.6	26
86	Role of ANO3 mutations in dystonia: A large-scale mutational screening study. Parkinsonism and Related Disorders, 2019, 62, 196-200.	2.2	25
87	Woman With X-Linked Recessive Dystonia-Parkinsonism. JAMA Neurology, 2014, 71, 1177.	9.0	24
88	Genetic Testing for Parkinson Disease. Neurology: Clinical Practice, 2021, 11, 69-77.	1.6	24
89	Imaging gradual neurodegeneration in a basal ganglia model disease. Annals of Neurology, 2019, 86, 517-526.	5.3	23
90	Nomenclature of Genetically Determined Myoclonus Syndromes: Recommendations of the International Parkinson and Movement Disorder Society Task Force. Movement Disorders, 2019, 34, 1602-1613.	3.9	23

#	Article	IF	CITATIONS
91	Expanding Data Collection for the <scp>MDSGene</scp> Database: Xâ€linked Dystoniaâ€Parkinsonism as Use Case Example. Movement Disorders, 2020, 35, 1933-1938.	3.9	23
92	From GWAS to clinical utility in Parkinson's disease. Lancet, The, 2011, 377, 613-614.	13.7	22
93	Excess Lipin enzyme activity contributes to TOR1A recessive disease and DYT-TOR1A dystonia. Brain, 2020, 143, 1746-1765.	7.6	22
94	Multiâ€omic landscaping of human midbrains identifies diseaseâ€relevant molecular targets and pathways in advancedâ€stage Parkinson's disease. Clinical and Translational Medicine, 2022, 12, e692.	4.0	22
95	Xâ€linked Dystoniaâ€Parkinsonism manifesting in a female patient due to atypical turner syndrome. Movement Disorders, 2013, 28, 675-678.	3.9	19
96	Relationship of Genotype, Phenotype, and Treatment in Dopaâ€Responsive Dystonia: <scp>MDSGene</scp> Review. Movement Disorders, 2022, 37, 237-252.	3.9	19
97	Faithful SGCE imprinting in iPSC-derived cortical neurons: an endogenous cellular model of myoclonus-dystonia. Scientific Reports, 2017, 7, 41156.	3.3	18
98	A novel, inâ€frame <i>KMT2B</i> deletion in a patient with apparently isolated, generalized dystonia. Movement Disorders, 2017, 32, 1495-1497.	3.9	18
99	Risky behaviors and Parkinson disease. Neurology, 2019, 93, e1412-e1424.	1.1	18
100	Brain Regional Differences in Hexanucleotide Repeat Length in X-Linked Dystonia-Parkinsonism Using Nanopore Sequencing. Neurology: Genetics, 2021, 7, e608.	1.9	18
101	Glucocerebrosidase (GBA) gene variants in a multi-ethnic Asian cohort with Parkinson's disease: mutational spectrum and clinical features. Journal of Neural Transmission, 2022, 129, 37-48.	2.8	18
102	Mitochondrial DNA Deletions Discriminate Affected from Unaffected <i>LRRK2</i> Mutation Carriers. Annals of Neurology, 2019, 86, 324-326.	5.3	17
103	Intrafamilial phenotypic and genetic heterogeneity of dystonia. Journal of the Neurological Sciences, 2006, 250, 92-96.	0.6	16
104	Facial twitches in ADCY5 -associated disease - Myokymia or myoclonus? An electromyography study. Parkinsonism and Related Disorders, 2017, 40, 73-75.	2.2	16
105	The commercial genetic testing landscape for Parkinson's disease. Parkinsonism and Related Disorders, 2021, 92, 107-111.	2.2	16
106	The role of mutations in COL6A3 in isolated dystonia. Journal of Neurology, 2016, 263, 730-734.	3.6	15
107	Validity and Prognostic Value of a Polygenic Risk Score for Parkinson's Disease. Genes, 2021, 12, 1859.	2.4	15
108	<i>WDR45</i> mutations may cause a <i>MECP2</i> mutation-negative Rett syndrome phenotype. Neurology: Genetics, 2018, 4, e227.	1.9	14

#	Article	IF	CITATIONS
109	Truncating <scp><i>VPS16</i></scp> Mutations Are Rare in Early Onset Dystonia. Annals of Neurology, 2021, 89, 625-626.	5.3	14
110	Linking Penetrance and Transcription in <scp>DYTâ€THAP1</scp> : Insights From a Human <scp>iPSC</scp> â€Derived Cortical Model. Movement Disorders, 2021, 36, 1381-1391.	3.9	14
111	Frequency of Heterozygous Parkin (PRKN) Variants and Penetrance of Parkinson's Disease Risk Markers in the Population-Based CHRIS Cohort. Frontiers in Neurology, 2021, 12, 706145.	2.4	14
112	One-year surveillance of SARS-CoV-2 transmission of the ELISA cohort: A model for population-based monitoring of infection risk. Science Advances, 2022, 8, eabm5016.	10.3	14
113	Genetic association study of the Pâ€ŧype ATPase <i>ATP13A2</i> in lateâ€onset Parkinson's disease. Movement Disorders, 2009, 24, 429-433.	3.9	13
114	Child Neurology: <i>PRRT2</i> -associated movement disorders and differential diagnoses. Neurology, 2014, 83, 1680-1683.	1.1	13
115	Will genotype drive treatment options?. Movement Disorders, 2019, 34, 1294-1299.	3.9	13
116	Stem Cells and Organoid Technology in Precision Medicine in Inflammation: Are We There Yet?. Frontiers in Immunology, 2020, 11, 573562.	4.8	13
117	Translational Research in Neurology and Neuroscience 2011. Archives of Neurology, 2011, 68, 709-16.	4.5	12
118	Sonographic alteration of substantia nigra is related to parkinsonism-predominant course of X-linked dystonia-parkinsonism. Parkinsonism and Related Disorders, 2017, 37, 43-49.	2.2	12
119	Dysfunctions in striatal microstructure can enhance perceptual decision making through deficits in predictive coding. Brain Structure and Function, 2017, 222, 3807-3817.	2.3	12
120	High prevalence of olfactory dysfunction in cervical dystonia. Parkinsonism and Related Disorders, 2018, 53, 33-36.	2.2	12
121	Nanopore Single-Molecule Sequencing for Mitochondrial DNA Methylation Analysis: Investigating Parkin-Associated Parkinsonism as a Proof of Concept. Frontiers in Aging Neuroscience, 2021, 13, 713084.	3.4	11
122	Coffee, smoking and aspirin are associated with age at onset in idiopathic Parkinson's disease. Journal of Neurology, 2022, 269, 4195-4203.	3.6	11
123	MicroRNAs as biomarker of Parkinson disease?. Neurology, 2015, 84, 636-638.	1.1	10
124	Discordant Monozygotic Parkinson Disease Twins: Role of Mitochondrial Integrity. Annals of Neurology, 2021, 89, 158-164.	5.3	10
125	Mosaic divergent repeat interruptions in XDP influence repeat stability and disease onset. Brain, 2023, 146, 1075-1082.	7.6	10
126	Munchausen syndrome by genetics: Next-generation challenges for clinicians. Neurology, 2017, 88, 1000-1001.	1.1	9

#	Article	IF	CITATIONS
127	Field synopsis and systematic meta-analyses of genetic association studies in isolated dystonia. Parkinsonism and Related Disorders, 2018, 57, 50-57.	2.2	9
128	Clinical and Demographic Characteristics of Upper Limb Dystonia. Movement Disorders, 2020, 35, 2086-2090.	3.9	9
129	Elucidating Hexanucleotide Repeat Number and Methylation within the X-Linked Dystonia-Parkinsonism (XDP)-Related SVA Retrotransposon in TAF1 with Nanopore Sequencing. Genes, 2022, 13, 126.	2.4	9
130	Dissection of <i>TAF1</i> neuronal splicing and implications for neurodegeneration in X-linked dystonia-parkinsonism. Brain Communications, 2021, 3, fcab253.	3.3	8
131	Mutations in VPS26A are not a frequent cause of Parkinson's disease. Neurobiology of Aging, 2014, 35, 1512.e1-1512.e2.	3.1	7
132	<scp>DNA</scp> Methylation as a Potential Molecular Mechanism in Xâ€linked Dystoniaâ€Parkinsonism. Movement Disorders, 2020, 35, 2220-2229.	3.9	7
133	Prodromal Xâ€Linked Dystoniaâ€Parkinsonism is Characterized by a Subclinical Motor Phenotype. Movement Disorders, 2022, 37, 1474-1482.	3.9	7
134	Task matters - challenging the motor system allows distinguishing unaffected Parkin mutation carriers from mutation-free controls. Parkinsonism and Related Disorders, 2021, 86, 101-104.	2.2	6
135	Balancing scientific interests and the rights of participants in designing a recall by genotype study. European Journal of Human Genetics, 2021, 29, 1146-1157.	2.8	6
136	Transcriptional Alterations in X-Linked Dystonia–Parkinsonism Caused by the SVA Retrotransposon. International Journal of Molecular Sciences, 2022, 23, 2231.	4.1	6
137	Neurocognitive profile of patients with X-linked dystonia-parkinsonism. Journal of Neural Transmission, 2021, 128, 671-678.	2.8	5
138	Ceramide-induced mitophagy impairs ß-oxidation-linked energy production in PINK1 deficiency. Autophagy, 2022, 18, 703-704.	9.1	5
139	Discordance in monozygotic Parkinson's disease twins – continuum or dichotomy?. Annals of Clinical and Translational Neurology, 2019, 6, 1102-1105.	3.7	4
140	Parkin Deficiency Appears Not to Be Associated with Cardiac Damage in Parkinson's Disease. Movement Disorders, 2021, 36, 271-273.	3.9	4
141	Pronounced Orthostatic Hypotension in GBA-Related Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 1539-1544.	2.8	4
142	Exploring Uncharted Territory: Genetically Determined Sex Differences in Parkinson's Disease. Annals of Neurology, 2021, 90, 15-18.	5.3	3
143	LIPAD (LRRK2/Luebeck International Parkinson's Disease) Study Protocol: Deep Phenotyping of an International Genetic Cohort. Frontiers in Neurology, 2021, 12, 710572.	2.4	3
144	Protocol of the Luebeck longitudinal investigation of SARS-CoV-2 infection (ELISA) study – a prospective population-based cohort study. BMC Public Health, 2022, 22, .	2.9	3

#	Article	IF	CITATIONS
145	Translating new research findings into clinical practice. Nature Reviews Neurology, 2012, 8, 65-66.	10.1	2
146	First Case of <scp>Parkinsonianâ€Pyramidal</scp> Syndrome Associated with a <scp><i>TBK1</i></scp> Mutation. Movement Disorders, 2021, 36, 523-525.	3.9	2
147	Monogenic Causes of Dystonic Syndromes: Common in Dystonic Cerebral Palsy, Rare in Isolated Dystonia. Movement Disorders, 2021, 36, 84-84.	3.9	1
148	Remembrance of Things Past: A Critical Step in Changing our Future. Annals of Neurology, 2021, 90, 521-523.	5.3	1
149	Elucidating novel functions of TorsinA: Elimination of misfolded proteins from the endoplasmic reticulum. Movement Disorders, 2011, 26, 1974-1974.	3.9	0
150	The Wilson films — Huntington's Chorea. Movement Disorders, 2011, 26, 2464-2466.	3.9	0
151	Genetic Risk of Alzheimer's Disease – Sleepless with the Enemy. Annals of Neurology, 2021, 89, 27-29.	5.3	0
152	Induced pluripotent stem cells for modeling of X-linked dystonia-parkinsonism. , 2021, , 239-250.		0
153	Involuntary moaning in a Hispanic family with eight affected members. Parkinsonism and Related Disorders, 2021, 89, 206-208.	2.2	0
154	KLEIN, Christine: Luebeck/Germany. , 2019, , 95-98.		0
155	A mixed-ethnicity myoclonus-dystonia patient with a novel SGCE nonsense mutation: a case report. BMC Neurology, 2022, 22, 11.	1.8	Ο