
Francisco J Hidalgo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8185756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbonyl Chemistry and the Formation of Heterocyclic Aromatic Amines with the Structure of Aminoimidazoazaarene. Journal of Agricultural and Food Chemistry, 2022, 70, 79-86.	5.2	16
2	Carbonyl-trapping abilities of 5-alkylresorcinols. Food Chemistry, 2022, 393, 133372.	8.2	4
3	Identification of acrolein as the reactive carbonyl responsible for the formation of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). Food Chemistry, 2021, 343, 128478.	8.2	16
4	Formation of naphthoquinones and anthraquinones by carbonyl-hydroquinone/benzoquinone reactions: A potential route for the origin of 9,10-anthraquinone in tea. Food Chemistry, 2021, 354, 129530.	8.2	8
5	Oligomerization of reactive carbonyls in the presence of ammonia-producing compounds: A route for the production of pyridines in foods. Food Chemistry, 2020, 304, 125284.	8.2	24
6	Formation of heterocyclic aromatic amines with the structure of aminoimidazoazarenes in food products. Food Chemistry, 2020, 313, 126128.	8.2	82
7	Identification of Precursors and Formation Pathway for the Heterocyclic Aromatic Amine 2-Amino-3-methylimidazo(4,5- <i>f</i>)quinoline (IQ). Journal of Agricultural and Food Chemistry, 2020, 68, 7474-7481.	5.2	14
8	Reactive carbonyls and the formation of the heterocyclic aromatic amine 2-amino-3,4-dimethylimidazo(4,5-f)quinoline (MeIQ). Food Chemistry, 2020, 324, 126898.	8.2	19
9	Conversion of 5-Hydroxymethylfurfural into 6-(Hydroxymethyl)pyridin-3-ol: A Pathway for the Formation of Pyridin-3-ols in Honey and Model Systems. Journal of Agricultural and Food Chemistry, 2020, 68, 5448-5454.	5.2	3
10	Formation of 3-hydroxypyridines by lipid oxidation products in the presence of ammonia and ammonia-producing compounds. Food Chemistry, 2020, 328, 127100.	8.2	6
11	Formation of phenylacetic acid and benzaldehyde by degradation of phenylalanine in the presence of lipid hydroperoxides: New routes in the amino acid degradation pathways initiated by lipid oxidation products. Food Chemistry: X, 2019, 2, 100037.	4.3	39
12	Characterization of Carbonyl–Phenol Adducts Produced by Food Phenolic Trapping of 4-Hydroxy-2-hexenal and 4-Hydroxy-2-nonenal. Journal of Agricultural and Food Chemistry, 2019, 67, 2043-2051.	5.2	15
13	A Simple Procedure To Detect Lipid-Derived Carbonyl-Phenol Adducts. ACS Symposium Series, 2019, , 91-107.	0.5	0
14	Carbonyl–Phenol Adducts: An Alternative Sink for Reactive and Potentially Toxic Lipid Oxidation Products. Journal of Agricultural and Food Chemistry, 2018, 66, 1320-1324.	5.2	61
15	Structure–Activity Relationship (SAR) of Phenolics for 2-Amino-1-methyl-6-phenylimidazo[4,5- <i>b</i>]pyridine (PhIP) Formation in Phenylalanine/Creatinine Reaction Mixtures Including (or Not) Oxygen and Lipid Hydroperoxides. Journal of Agricultural and Food Chemistry. 2018. 66. 255-264.	5.2	15
16	Phenolic trapping of lipid oxidation products 4-oxo-2-alkenals. Food Chemistry, 2018, 240, 822-830.	8.2	26
17	Structure–Activity Relationship (SAR) of Phenolics for the Inhibition of 2-Phenylethylamine Formation in Model Systems Involving Phenylalanine and the 13-Hydroperoxide of Linoleic Acid. Journal of Agricultural and Food Chemistry, 2018, 66, 13503-13512.	5.2	4
18	2,4-Alkadienal trapping by phenolics. Food Chemistry, 2018, 263, 89-95.	8.2	18

2

#	Article	IF	CITATIONS
19	Determination of Fatty Acid Composition and Oxidation in Fish Oils by High-Resolution Nuclear Magnetic Resonance Spectroscopy. , 2018, , 1837-1849.		0
20	Protective effect of phenolic compounds on carbonyl-amine reactions produced by lipid-derived reactive carbonyls. Food Chemistry, 2017, 229, 388-395.	8.2	23
21	Model Studies on the Effect of Aldehyde Structure on Their Selective Trapping by Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2017, 65, 4736-4743.	5.2	50
22	Epoxyalkenal-trapping ability of phenolic compounds. Food Chemistry, 2017, 237, 444-452.	8.2	29
23	Controlling Amino Acid Degradations Produced by Reactive Carbonyls in Foods. ACS Symposium Series, 2016, , 23-34.	0.5	0
24	Amino acid decarboxylations produced by lipid-derived reactive carbonyls in amino acid mixtures. Food Chemistry, 2016, 209, 256-261.	8.2	25
25	The triple defensive barrier of phenolic compounds against the lipid oxidation-induced damage in food products. Trends in Food Science and Technology, 2016, 54, 165-174.	15.1	94
26	Toxicologically Relevant Aldehydes Produced during the Frying Process Are Trapped by Food Phenolics. Journal of Agricultural and Food Chemistry, 2016, 64, 5583-5589.	5.2	77
27	Antagonism between lipid-derived reactive carbonyls and phenolic compounds in the Strecker degradation of amino acids. Food Chemistry, 2016, 194, 1143-1148.	8.2	24
28	Use of Nucleophilic Compounds, and Their Combination, for Acrylamide Removal. , 2016, , 297-307.		4
29	Amino Acid Degradations Produced by Lipid Oxidation Products. Critical Reviews in Food Science and Nutrition, 2016, 56, 1242-1252.	10.3	66
30	Determination of Fatty Acid Composition and Oxidation in Fish Oils by High Resolution Nuclear Magnetic Resonance Spectroscopy. , 2016, , 1-14.		1
31	Contribution of Phenolic Compounds to Food Flavors: Strecker-Type Degradation of Amines and Amino Acids Produced by <i>o</i> and <i>p</i> Diphenols. Journal of Agricultural and Food Chemistry, 2015, 63, 312-318.	5.2	28
32	Oxidative versus Non-oxidative Decarboxylation of Amino Acids: Conditions for the Preferential Formation of Either Strecker Aldehydes or Amines in Amino Acid/Lipid-Derived Reactive Carbonyl Model Systems. Journal of Agricultural and Food Chemistry, 2015, 63, 8037-8043.	5.2	17
33	2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) formation and fate: an example of the coordinate contribution of lipid oxidation and Maillard reaction to the production and elimination of processing-related food toxicants. RSC Advances, 2015, 5, 9709-9721.	3.6	36
34	Lipid-derived aldehyde degradation under thermal conditions. Food Chemistry, 2015, 174, 89-96.	8.2	71
35	Reactive Carbonyl-Scavenging Ability of 2-Aminoimidazoles: 2-Amino-1-methylbenzimidazole and 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Journal of Agricultural and Food Chemistry, 2014, 62, 12045-12051.	5.2	11
36	2-Alkenal-scavenging ability of m-diphenols. Food Chemistry, 2014, 160, 118-126.	8.2	43

#	Article	IF	CITATIONS
37	Ammonia and formaldehyde participate in the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in addition to creati(ni)ne and phenylacetaldehyde. Food Chemistry, 2014, 155, 74-80.	8.2	48
38	Structural characteristics that determine the inhibitory role of phenolic compounds on 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) formation. Food Chemistry, 2014, 151, 480-486.	8.2	47
39	Histamine formation by lipid oxidation products. Food Research International, 2013, 52, 206-213.	6.2	17
40	Cysteine- and serine-thermal degradation products promote the formation of Strecker aldehydes in amino acid reaction mixtures. Food Research International, 2013, 54, 1394-1399.	6.2	23
41	Comparative formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in creatinine/phenylalanine and creatinine/phenylalanine/4-oxo-2-nonenal reaction mixtures. Food Chemistry, 2013, 138, 180-185.	8.2	19
42	Determination of α-keto acids in pork meat and Iberian ham via tandem mass spectrometry. Food Chemistry, 2013, 140, 183-188.	8.2	10
43	Effect of amino acids on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in creatinine/phenylalanine and creatinine/phenylalanine/4-oxo-2-nonenal reaction mixtures. Food Chemistry, 2013, 141, 4240-4245.	8.2	30
44	Intermediate role of α-keto acids in the formation of Strecker aldehydes. Food Chemistry, 2013, 141, 1140-1146.	8.2	22
45	Strecker-Type Degradation of Phenylalanine Initiated by 4-Oxo-2-alkenals in Comparison to That Initiated by 2,4-Alkadienals, 4,5-Epoxy-2-alkenals, or 4-Hydroxy-2-nonenal. Journal of Agricultural and Food Chemistry, 2013, 61, 10231-10237.	5.2	16
46	Chemical Conversion of Phenylethylamine into Phenylacetaldehyde by Carbonyl–Amine Reactions in Model Systems. Journal of Agricultural and Food Chemistry, 2012, 60, 5491-5496.	5.2	16
47	Mitigating effect of piquin pepper (Capsicum annuum L. var. Aviculare) oleoresin on acrylamide formation in potato and tortilla chips. LWT - Food Science and Technology, 2012, 48, 261-267.	5.2	16
48	Effect of lipid oxidation products on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in model systems. Food Chemistry, 2012, 135, 2569-2574.	8.2	44
49	Mitigating effect of amaranth (Amarantus hypochondriacus) protein on acrylamide formation in foods. Food Chemistry, 2012, 135, 2293-2298.	8.2	35
50	Formation of $\hat{1}^2$ -phenylethylamine as a consequence of lipid oxidation. Food Research International, 2012, 46, 321-325.	6.2	32
51	Positive interaction between amino and sulfhydryl groups for acrylamide removal. Food Research International, 2011, 44, 1083-1087.	6.2	29
52	The Maillard reaction and lipid oxidation. Lipid Technology, 2011, 23, 59-62.	0.3	75
53	Amino phospholipids and lecithins as mitigating agents for acrylamide in asparagine/glucose and asparagine/2,4-decadienal model systems. Food Chemistry, 2011, 126, 104-108.	8.2	11
54	Free radical-scavenging activity of nonenzymatically-browned phospholipids produced in the reaction between phosphatidylethanolamine and ribose in hydrophobic media. Food Chemistry, 2011, 124, 1490-1495.	8.2	22

#	Article	IF	CITATIONS
55	Strecker aldehydes and α-keto acids, produced by carbonyl–amine reactions, contribute to the formation of acrylamide. Food Chemistry, 2011, 128, 465-470.	8.2	29
56	Asparagine Decarboxylation by Lipid Oxidation Products in Model Systems. Journal of Agricultural and Food Chemistry, 2010, 58, 10512-10517.	5.2	48
57	Model Reactions of Acrylamide with Selected Amino Compounds. Journal of Agricultural and Food Chemistry, 2010, 58, 1708-1713.	5.2	81
58	Role of mercaptans on acrylamide elimination. Food Chemistry, 2010, 122, 596-601.	8.2	38
59	Conversion of 3â€aminopropionamide and 3â€alkylaminopropionamides into acrylamide in model systems. Molecular Nutrition and Food Research, 2009, 53, 1512-1520.	3.3	26
60	Degradation of asparagine to acrylamide by carbonyl-amine reactions initiated by alkadienals. Food Chemistry, 2009, 116, 779-784.	8.2	38
61	Effect of β-sitosterol in the antioxidative activity of oxidized lipid–amine reaction products. Food Research International, 2009, 42, 1215-1222.	6.2	17
62	Contribution of Lipid Oxidation Products to Acrylamide Formation in Model Systems. Journal of Agricultural and Food Chemistry, 2008, 56, 6075-6080.	5.2	115
63	<i>Food Anoxia and the Formation of Either Flavor or Toxic Compounds by Amino Acid Degradation Initiated by Oxidized Lipids</i> . Annals of the New York Academy of Sciences, 2008, 1126, 25-29.	3.8	12
64	The role of amino phospholipids in the removal of the cito- and geno-toxic aldehydes produced during lipid oxidation. Food and Chemical Toxicology, 2008, 46, 43-48.	3.6	14
65	Model Studies on the Degradation of Phenylalanine Initiated by Lipid Hydroperoxides and Their Secondary and Tertiary Oxidation Products. Journal of Agricultural and Food Chemistry, 2008, 56, 7970-7975.	5.2	45
66	Influence of Lipids in the Generation of Phenylacetaldehyde in Wort-Related Model Systems. Journal of Agricultural and Food Chemistry, 2008, 56, 3155-3159.	5.2	12
67	Effect of Tocopherols in the Antioxidative Activity of Oxidized Lipidâ~'Amine Reaction Products. Journal of Agricultural and Food Chemistry, 2007, 55, 4436-4442.	5.2	32
68	Strecker Degradation of Phenylalanine Initiated by 2,4-Decadienal or Methyl 13-Oxooctadeca-9,11-dienoate in Model Systems. Journal of Agricultural and Food Chemistry, 2007, 55, 1308-1314.	5.2	53
69	Conversion of Phenylalanine into Styrene by 2,4-Decadienal in Model Systems. Journal of Agricultural and Food Chemistry, 2007, 55, 4902-4906.	5.2	28
70	Amine Degradation by 4,5-Epoxy-2-decenal in Model Systems. Journal of Agricultural and Food Chemistry, 2006, 54, 2398-2404.	5.2	31
71	Antioxidative Activity of Amino Phospholipids and Phospholipid/Amino Acid Mixtures in Edible Oils As Determined by the Rancimat Method. Journal of Agricultural and Food Chemistry, 2006, 54, 5461-5467.	5.2	55
72	Chemical Conversion of α-Amino Acids into α-Keto Acids by 4,5-Epoxy-2-decenal. Journal of Agricultural and Food Chemistry, 2006, 54, 6101-6105.	5.2	19

Francisco J Hidalgo

#	Article	IF	CITATIONS
73	Peptides and proteins in edible oils: Stability, allergenicity, and new processing trends. Trends in Food Science and Technology, 2006, 17, 56-63.	15.1	53
74	Antioxidative Activity of Non-Enzymatically Browned Proteins by Reaction with Lipid Oxidation Products. , 2005, , 225-230.		0
75	Strecker Type Degradation of Phenylalanine by 4-Hydroxy-2-nonenal in Model Systems. Journal of Agricultural and Food Chemistry, 2005, 53, 10254-10259.	5.2	33
76	Interplay between the Maillard Reaction and Lipid Peroxidation in Biochemical Systems. Annals of the New York Academy of Sciences, 2005, 1043, 319-326.	3.8	44
77	Phospholipid oxidation and nonenzymatic browning development in phosphatidylethanolamine/ribose/lysine model systems. European Food Research and Technology, 2005, 220, 459-465.	3.3	33
78	Strecker-type Degradation of Phenylalanine by Methyl 9,10-Epoxy-13-oxo-11-octadecenoate and Methyl 12,13-Epoxy-9-oxo-11-octadecenoate. Journal of Agricultural and Food Chemistry, 2005, 53, 4583-4588.	5.2	16
79	2-Alkylpyrrole Formation from 4,5-Epoxy-2-alkenals. Chemical Research in Toxicology, 2005, 18, 342-348.	3.3	20
80	Coordinate Contribution of Lipid Oxidation and Maillard Reaction to the Nonenzymatic Food Browning. Critical Reviews in Food Science and Nutrition, 2005, 45, 49-59.	10.3	302
81	Changes Produced in the Antioxidative Activity of Phospholipids as a Consequence of Their Oxidation. Journal of Agricultural and Food Chemistry, 2005, 53, 659-662.	5.2	67
82	Nonenymatic Browning, Fluorescence Development, and Formation of Pyrrole Derivatives in Phosphatidylethanolamine/ Ribose/Lysine Model Systems. Journal of Food Science, 2005, 70, c387.	3.1	6
83	Determination of pyrrolized phospholipids in oxidized phospholipid vesicles and lipoproteins. Analytical Biochemistry, 2004, 334, 155-163.	2.4	27
84	Strecker-type Degradation Produced by the Lipid Oxidation Products 4,5-Epoxy-2-Alkenals. Journal of Agricultural and Food Chemistry, 2004, 52, 7126-7131.	5.2	106
85	Contribution of Phospholipid Pyrrolization to the Color Reversion Produced during Deodorization of Poorly Degummed Vegetable Oils. Journal of Agricultural and Food Chemistry, 2004, 52, 4166-4171.	5.2	43
86	Phosphatidylethanolamine Modification by Oxidative Stress Product 4,5(E)-Epoxy-2(E)-heptenal. Chemical Research in Toxicology, 2003, 16, 1632-1641.	3.3	43
87	Comparative Methyl Linoleate and Methyl Linolenate Oxidation in the Presence of Bovine Serum Albumin at Several Lipid/Protein Ratios. Journal of Agricultural and Food Chemistry, 2003, 51, 4661-4667.	5.2	14
88	Edible oil analysis by high-resolution nuclear magnetic resonance spectroscopy: recent advances and future perspectives. Trends in Food Science and Technology, 2003, 14, 499-506.	15.1	73
89	Effect of the Pyrrole Polymerization Mechanism on the Antioxidative Activity of Nonenzymatic Browning Reactions. Journal of Agricultural and Food Chemistry, 2003, 51, 5703-5708.	5.2	34
90	Methyl Linoleate Oxidation in the Presence of Bovine Serum Albumin. Journal of Agricultural and Food Chemistry, 2002, 50, 5463-5467.	5.2	21

#	Article	IF	CITATIONS
91	Oil Stability Prediction by High-Resolution13C Nuclear Magnetic Resonance Spectroscopy. Journal of Agricultural and Food Chemistry, 2002, 50, 5825-5831.	5.2	38
92	Oil fractionation as a preliminary step in the characterization of vegetable oils by high-resolution 13 C NMR spectroscopy. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 261-266.	1.9	16
93	Low molecular weight polypeptides in virgin and refined olive oils. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 685-689.	1.9	18
94	Influence of Cultivar and Fruit Ripening on Olive (Olea europaea) Fruit Protein Content, Composition, and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2001, 49, 4267-4270.	5.2	68
95	Determination of Peptides and Proteins in Fats and Oils. Analytical Chemistry, 2001, 73, 698-702.	6.5	62
96	Inhibition of Proteolysis in Oxidized Lipid-Damaged Proteins. Journal of Agricultural and Food Chemistry, 2001, 49, 6006-6011.	5.2	25
97	Pyrrolization and Antioxidant Function of Proteins Following Oxidative Stress. Chemical Research in Toxicology, 2001, 14, 582-588.	3.3	21
98	Contribution of Pyrrole Formation and Polymerization to Non-Enzymatic Browning during Chicken Roasting. ACS Symposium Series, 2001, , 201-211.	0.5	1
99	Pinoresinol and 1-acetoxypinoresinol, two new phenolic compounds identified in olive oil. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 715-720.	1.9	145
100	Contribution of Pyrrole Formation and Polymerization to the Nonenzymatic Browning Produced by Aminoâ~'Carbonyl Reactions. Journal of Agricultural and Food Chemistry, 2000, 48, 3152-3158.	5.2	45
101	Modification of Bovine Serum Albumin Structure following Reaction with 4,5(E)-Epoxy-2(E)-heptenal. Chemical Research in Toxicology, 2000, 13, 501-508.	3.3	48
102	The role of lipids in nonenzymatic browning. Grasas Y Aceites, 2000, 51, .	0.9	66
103	Effect of pH and Temperature on Comparative Antioxidant Activity of Nonenzymatically Browned Proteins Produced by Reaction with Oxidized Lipids and Carbohydrates. Journal of Agricultural and Food Chemistry, 1999, 47, 748-752.	5.2	40
104	Modification of Histidine Residues by 4,5-Epoxy-2-alkenals. Chemical Research in Toxicology, 1999, 12, 654-660.	3.3	43
105	Effect of pH and Temperature on Comparative Nonenzymatic Browning of Proteins Produced by Oxidized Lipids and Carbohydrates. Journal of Agricultural and Food Chemistry, 1999, 47, 742-747.	5.2	42
106	Determination of ε-N-Pyrrolylnorleucine in Fresh Food Products. Journal of Agricultural and Food Chemistry, 1999, 47, 1942-1947.	5.2	30
107	A Spectrophotometric Method for the Determination of Proteins Damaged by Oxidized Lipids. Analytical Biochemistry, 1998, 262, 129-136.	2.4	47
108	Effect of initial slight oxidation on stability of polyunsaturated fatty acid/protein mixtures under controlled atmospheres. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 1127-1133.	1.9	9

#	Article	IF	CITATIONS
109	Effect of initial slight oxidation on stability of polyunsaturated fatty acid/protein mixtures under controlled atmospheres. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 1127-1133.	1.9	8
110	Effect of Oxidized Lipid/Amino Acid Reaction Products on the Antioxidative Activity of Common Antioxidants. Journal of Agricultural and Food Chemistry, 1998, 46, 3768-3771.	5.2	15
111	Feed-Back Inhibition of Oxidative Stress by Oxidized Lipid/Amino Acid Reaction Productsâ€. Biochemistry, 1997, 36, 15765-15771.	2.5	69
112	Comparative Antioxidant Activity of Maillard- and Oxidized Lipid-Damaged Bovine Serum Albumin. Journal of Agricultural and Food Chemistry, 1997, 45, 3250-3254.	5.2	37
113	Antioxidative Activity of Nonenzymatically Browned Proteins Produced in Oxidized Lipid/Protein Reactions. Journal of Agricultural and Food Chemistry, 1997, 45, 1365-1369.	5.2	24
114	Antioxidative Activity of Pyrrole, Imidazole, Dihydropyridine, and Pyridinium Salt Derivatives Produced in Oxidized Lipid/Amino Acid Browning Reactions. Journal of Agricultural and Food Chemistry, 1996, 44, 686-691.	5.2	43
115	Antioxidative Activity of Lysine/13-Hydroperoxy-9(Z),11(E)-octadecadienoic Acid Reaction Products. Journal of Agricultural and Food Chemistry, 1996, 44, 3946-3949.	5.2	8
116	Contribution of the Formation of Oxidized Lipid/Amino Acid Reaction Products to the Protective Role of Amino Acids in Oils and Fats. Journal of Agricultural and Food Chemistry, 1996, 44, 1890-1895.	5.2	17
117	Epoxyoxoene fatty esters: key intermediates for the synthesis of long-chain pyrrole and furan fatty esters. Chemistry and Physics of Lipids, 1995, 77, 1-11.	3.2	13
118	Determination of lysine modification product ε-N-pyrrolylnorleucine in hydrolyzed proteins and trout muscle microsomes by micellar electrokinetic capillary chromatography. Lipids, 1995, 30, 477-483.	1.7	23
119	Natural antioxidants produced in oxidized lipid/amino acid browning reactions. JAOCS, Journal of the American Oil Chemists' Society, 1995, 72, 1571-1575.	1.9	20
120	Influence of Irradiation Time, pH, and Lipid/Amino Acid Ratio on Pyrrole Production during Microwave Heating of a Lysine/(E)-4,5-Epoxy-(E)-2-heptenal Model System. Journal of Agricultural and Food Chemistry, 1995, 43, 1029-1033.	5.2	8
121	Antioxidative Activity of (E)-2-Octenal/Amino Acids Reaction Products. Journal of Agricultural and Food Chemistry, 1995, 43, 795-800.	5.2	27
122	Linoleic acid oxidation in the presence of amino compounds produces pyrroles by carbonyl amine reactions. Lipids and Lipid Metabolism, 1995, 1258, 319-327.	2.6	34
123	Characterization of the Products Formed during Microwave Irradiation of the Nonenzymic Browning Lysine/(E)-4,5-Epoxy-(E)-2-heptenal Model System. Journal of Agricultural and Food Chemistry, 1995, 43, 1023-1028.	5.2	19
124	Formation of volatile pyrrole products from epoxyalkenal/protein reactions. Journal of the Science of Food and Agriculture, 1994, 66, 543-546.	3.5	17
125	Modification of lysine amino groups by the lipid peroxidation product 4,5(E)-Epoxy-2(E)-hepteal. Lipids, 1994, 29, 243-249.	1.7	46
126	Identification and classification of olive oils by high-resolution13C nuclear magnetic resonance. JAOCS, Journal of the American Oil Chemists' Society, 1994, 71, 361-364.	1.9	40

#	Article	IF	CITATIONS
127	Non-enzymatic Browning and Fluorescence Development in a (E)-4,5-Epoxy-(E)-2-heptenal/Lysine Model System. Journal of Food Science, 1993, 58, 667-670.	3.1	34
128	Browning and fluorescence development during microwave irradiation of a lysine/(E)-4,5-epoxy-(E)-2-heptenal model system. Journal of Agricultural and Food Chemistry, 1992, 40, 2269-2273.	5.2	13
129	Comparative Antioxidant Effectiveness of Dietary β-Carotene, Vitamin E, Selenium and Coenzyme Q10 in Rat Erythrocytes and Plasma. Journal of Nutrition, 1991, 121, 50-56.	2.9	51
130	Oxidant-increased proteolysis in rat liver slices: Effect of bromotrichloromethane, antioxidants and effectors of proteolysis. Chemico-Biological Interactions, 1990, 76, 293-305.	4.0	5
131	Oxidant-induced haemoprotein degradation in rat tissue slices: effect of bromotrichloromethane, antioxidants and chelators. BBA - Proteins and Proteomics, 1990, 1037, 313-320.	2.1	10
132	Damage to red blood cells by halocompounds. Toxicology Letters, 1990, 52, 191-199.	0.8	9
133	Carob bean germ seed (Ceratonia siliqua): Study of the oil and proteins. Journal of the Science of Food and Agriculture, 1989, 46, 495-502.	3.5	23
134	Changes induced in .betalactoglobulin B following interactions with linoleic acid 13-hydroperoxide. Journal of Agricultural and Food Chemistry, 1989, 37, 860-866.	5.2	50