
Gustavo Matute-Bello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/818553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Animal models of acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L379-L399.	2.9	1,371
2	Fas (CD95) Induces Alveolar Epithelial Cell Apoptosis in Vivo. American Journal of Pathology, 2001, 158, 153-161.	3.8	228
3	Airway epithelial regulation of pulmonary immune homeostasis and inflammation. Clinical Immunology, 2014, 151, 1-15.	3.2	193
4	Acute Respiratory Distress Syndrome and Diffuse Alveolar Damage. New Insights on a Complex Relationship. Annals of the American Thoracic Society, 2017, 14, 844-850.	3.2	124
5	Essential Role of MMP-12 in Fas-Induced Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 210-221.	2.9	112
6	Recombinant human Fas ligand induces alveolar epithelial cell apoptosis and lung injury in rabbits. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L328-L335.	2.9	91
7	Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, e1-e14.	2.9	82
8	IVIG-mediated protection against necrotizing pneumonia caused by MRSA. Science Translational Medicine, 2016, 8, 357ra124.	12.4	70
9	Optimal timing to repopulation of resident alveolar macrophages with donor cells following total body irradiation and bone marrow transplantation in mice. Journal of Immunological Methods, 2004, 292, 25-34.	1.4	64
10	Differential Response of Human Lung Epithelial Cells to Fas-Induced Apoptosis. American Journal of Pathology, 2004, 164, 1949-1958.	3.8	63
11	The biological activity of FasL in human and mouse lungs is determined by the structure of its stalk region. Journal of Clinical Investigation, 2011, 121, 1174-1190.	8.2	56
12	Fas-Mediated Acute Lung Injury Requires Fas Expression on Nonmyeloid Cells of the Lung. Journal of Immunology, 2005, 175, 4069-4075.	0.8	53
13	Sustained Lipopolysaccharide-Induced Lung Inflammation in Mice Is Attenuated by Functional Deficiency of the Fas/Fas Ligand System. Vaccine Journal, 2004, 11, 358-361.	2.6	42
14	Blockade of the Fas/FasL System Improves Pneumococcal Clearance from the Lungs without Preventing Dissemination of Bacteria to the Spleen. Journal of Infectious Diseases, 2005, 191, 596-606.	4.0	36
15	Fas activation alters tight junction proteins in acute lung injury. Thorax, 2019, 74, 69-82.	5.6	35
16	CYR61 (CCN1) overexpression induces lung injury in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L759-L765.	2.9	30
17	Doxycycline impairs neutrophil migration to the airspaces of the lung in mice exposed to intratracheal lipopolysaccharide. Journal of Inflammation, 2012, 9, 31.	3.4	27
18	The Fas/FasL pathway impairs the alveolar fluid clearance in mouse lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L377-L388.	2.9	27

GUSTAVO MATUTE-BELLO

#	Article	lF	CITATIONS
19	Fas Activation in Alveolar Epithelial Cells Induces KC (CXCL1) Release by a MyD88-Dependent Mechanism. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 650-658.	2.9	24
20	Endogenous secreted phospholipase A 2 group X regulates cysteinyl leukotrienes synthesis by human eosinophils. Journal of Allergy and Clinical Immunology, 2016, 137, 268-277.e8.	2.9	22
21	Role of the Fas/FasL system in a model of RSV infection in mechanically ventilated mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L451-L460.	2.9	16
22	Prevalence and correlates of suicide ideation in patients with COPD: a mixed methods study. International Journal of COPD, 2014, 10, 1321.	2.3	16
23	The caspase inhibitor zVAD increases lung inflammation in pneumovirus infection in mice. Physiological Reports, 2015, 3, e12332.	1.7	9
24	Fluid restriction reduces pulmonary edema in a model of acute lung injury in mechanically ventilated rats. PLoS ONE, 2019, 14, e0210172.	2.5	9
25	Targeting caspase-1 in sepsis: a novel approach to an old problem. Intensive Care Medicine, 2007, 33, 755-757.	8.2	7
26	Alveolar CCN1 is associated with mechanical stretch and acute respiratory distress syndrome severity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L825-L832.	2.9	6
27	The bioactivity of soluble Fas ligand is modulated by key amino acids of its stalk region. PLoS ONE, 2021, 16, e0253260.	2.5	6
28	Fas-deficient mice have impaired alveolar neutrophil recruitment and decreased expression of anti-KC autoantibody:KC complexes in a model of acute lung injury. Respiratory Research, 2012, 13, 91.	3.6	4
29	How to Measure Alterations in Alveolar Barrier Function as a Marker of Lung Injury. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2015, 63, 24.3.1-24.3.15.	1.1	4
30	Should we shift the paradigm of preclinical models for ARDS therapies?. Thorax, 2019, 74, 1109-1110.	5.6	3
31	Occam's Razor versus Hickam's Dictum. Annals of the American Thoracic Society, 2017, 14, 1709-1713.	3.2	2
32	A 68-Year-Old Man With Skin Rash and a Pleural Effusion. Chest, 2020, 158, e33-e36.	0.8	2
33	Liponucleotides: Promises and Unknowns as Novel Therapeutics for Acute Respiratory Distress Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 645-646.	2.9	1
34	Reply to Dr. Weiskirchen. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L749-L749.	2.9	0