
Fumimasa Horikiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/818295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact on on-resistance of p-n junction diodes by using heavily Ge-doped GaN substrate. Japanese Journal of Applied Physics, 2022, 61, 061009.	1.5	1
2	Mapping of photo-electrochemical etched Ni/GaN Schottky contacts using scanning internal photoemission microscopy—comparison between n- and p-type GaN samples. Japanese Journal of Applied Physics, 2021, 60, SBBD12.	1.5	4
3	Breakdown phenomenon dependences on the number and positions of threading dislocations in vertical p-n junction GaN diodes. Japanese Journal of Applied Physics, 2021, 60, SBBD09.	1.5	5
4	Substrate off-angle dependency of Al content in Al x Ga1â^'x N/GaN high-electron-mobility transistor structures on free-standing GaN substrates. Japanese Journal of Applied Physics, 2021, 60, 076505.	1.5	0
5	Possible contribution of the Gibbsâ^'Thomson effect to filling nanopipes in GaN homoepitaxial layers. Japanese Journal of Applied Physics, 2021, 60, 078001.	1.5	1
6	Self-terminating contactless photo-electrochemical (CL-PEC) etching for fabricating highly uniform recessed-gate AlGaN/GaN high-electron-mobility transistors (HEMTs). Journal of Applied Physics, 2021, 130, .	2.5	4
7	Possible influence of oxygen segregation on reducing specific surface energies for m-plane sides of nanopipes in GaN. Japanese Journal of Applied Physics, 2021, 60, 098002.	1.5	1
8	Step-edge segregation model for step-velocity dependences of carbon and oxygen concentrations in GaN layers grown on m-plane GaN. Japanese Journal of Applied Physics, 2021, 60, 018002.	1.5	1
9	Analysis of step-velocity-dependent concentration of magnesium in GaN based on Burtonâ^'Cabreraâ^'Frank theory and step-edge segregation model. Japanese Journal of Applied Physics, 2021, 60, 128003.	1.5	3
10	Two-Step Mesa Structure GaN p-n Diodes With Low ON-Resistance, High Breakdown Voltage, and Excellent Avalanche Capabilities. IEEE Electron Device Letters, 2020, 41, 123-126.	3.9	42
11	Roles of carbon impurities and intrinsic nonradiative recombination centers on the carrier recombination processes of GaN crystals. Applied Physics Express, 2020, 13, 012004.	2.4	20
12	Effect of Wafer Offâ€Angles on Defect Formation in Drift Layers Grown on Freeâ€ S tanding GaN Substrates. Physica Status Solidi (B): Basic Research, 2020, 257, 1900561.	1.5	9
13	Homo-epitaxial growth of n-GaN layers free from carbon-induced mobility collapse and off-angle-dependent doping variation by quartz-free hydride vapor phase epitaxy. Applied Physics Letters, 2020, 117, .	3.3	42
14	Step-edge and kink segregation models for analysis of reported step-velocity dependences of carbon concentration in GaN. Japanese Journal of Applied Physics, 2020, 59, 068001.	1.5	5
15	Self-termination of contactless photo-electrochemical (PEC) etching on aluminum gallium nitride heterostructures. Applied Physics Express, 2020, 13, 026508.	2.4	13
16	Thermal-assisted contactless photoelectrochemical etching for GaN. Applied Physics Express, 2020, 13, 046501.	2.4	6
17	Impact of threading dislocations in GaN p–n diodes on forward <i>I</i> – <i>V</i> characteristics. Japanese Journal of Applied Physics, 2020, 59, 106503.	1.5	13
18	Electrodeless photo-assisted electrochemical etching of GaN using a H3PO4-based solution containing S2O8 2– ions. Applied Physics Express, 2019, 12, 066504.	2.4	14

Fumimasa Horikiri

#	Article	IF	CITATIONS
19	Photoelectrochemical Etching Technology for Gallium Nitride Power and RF Devices. IEEE Transactions on Semiconductor Manufacturing, 2019, 32, 489-495.	1.7	6
20	4.9 kV breakdown voltage vertical GaN p–n junction diodes with high avalanche capability. Japanese Journal of Applied Physics, 2019, 58, SCCD03.	1.5	45
21	Impact of damage-free wet etching process on fabrication of high breakdown voltage GaN p–n junction diodes. Japanese Journal of Applied Physics, 2019, 58, SCCD05.	1.5	12
22	Simple wet-etching technology for GaN using an electrodeless photo-assisted electrochemical reaction with a luminous array film as the UV source. Applied Physics Express, 2019, 12, 031003.	2.4	21
23	Mapping of nâ€GaN Schottky Contacts With Wavy Surface Morphology Using Scanning Internal Photoemission Microscopy. Physica Status Solidi (B): Basic Research, 2018, 255, 1700480.	1.5	11
24	Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy. Applied Physics Express, 2018, 11, 045502.	2.4	26
25	5.0 kV breakdown-voltage vertical GaN p–n junction diodes. Japanese Journal of Applied Physics, 2018, 57, 04FG09.	1.5	88
26	Direct Observation of High Current Density Area by Microscopic Electroluminescence Mapping in Vertical GaN p–n Junction Diodes. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700501.	1.8	7
27	Excellent wet etching technique using pulsed anodic oxidation for homoepitaxially grown GaN layer. Japanese Journal of Applied Physics, 2018, 57, 086502.	1.5	33
28	Excellent potential of photo-electrochemical etching for fabricating high-aspect-ratio deep trenches in gallium nitride. Applied Physics Express, 2018, 11, 091001.	2.4	37
29	Wafer-level nondestructive inspection of substrate off-angle and net donor concentration of the n ^{â^'} -drift layer in vertical GaN-on-GaN Schottky diodes. Japanese Journal of Applied Physics, 2017, 56, 061001.	1.5	16
30	lon-irradiation damage on GaN p-n junction diodes by inductively coupled plasma etching and its recovery by thermal treatment. Nuclear Instruments & Methods in Physics Research B, 2017, 409, 65-68.	1.4	7
31	Review—Recent Advancement in Charge- and Photo-Assisted Non-Contact Electrical Characterization of SiC, GaN, and AlGaN/GaN HEMT. ECS Journal of Solid State Science and Technology, 2017, 6, S3129-S3140.	1.8	11
32	Nondestructive measurement of homoepitaxially grown GaN film thickness with Fourier transform infrared spectroscopy. Japanese Journal of Applied Physics, 2017, 56, 120301.	1.5	2
33	Hydride-vapor-phase epitaxial growth of highly pure GaN layers with smooth as-grown surfaces on freestanding GaN substrates. Japanese Journal of Applied Physics, 2017, 56, 085503.	1.5	74
34	Wafer-Level Donor Uniformity Improvement by Substrate Off-Angle Control for Vertical GaN-on-GaN Power Switching Devices. IEEE Transactions on Semiconductor Manufacturing, 2017, 30, 486-493.	1.7	11
35	High-k Dielectric Passivation for GaN Diode with a Field Plate Termination. Electronics (Switzerland), 2016, 5, 15.	3.1	16
36	Vertical GaN p-n Junction Diodes With High Breakdown Voltages Over 4 kV. IEEE Electron Device Letters, 2015, 36, 1180-1182.	3.9	195

Fumimasa Horikiri

#	Article	IF	CITATIONS
37	Evaluation of High-temperature Electronic and Electrochemical Properties of the Strained La1^ ^minus;xSrxCoO3^ ^minus;^ ^delta; Films Prepared by a Pulsed Laser Deposition Technique. Electrochemistry, 2014, 82, 884-890.	1.4	1
38	Bulk micromachined energy harvesters employing (K, Na)NbO ₃ thin film. Journal of Micromechanics and Microengineering, 2013, 23, 035029.	2.6	26
39	Dry Etching of Lead-Free (K,Na)NbO\$_{3}\$ Piezoelectric Films by Ar/C\$_{4}\$F\$_{8}\$ Plasma. Japanese Journal of Applied Physics, 2012, 51, 076202.	1.5	4
40	Evaluation of Crystal Orientation for (K,Na)NbO\$_{3}\$ Films Using X-ray Diffraction Reciprocal Space Map and Relationship between Crystal Orientation and Piezoelectric Coefficient. Japanese Journal of Applied Physics, 2012, 51, 075502.	1.5	5
41	Dry Etching of Lead-Free (K,Na)NbO ₃ Piezoelectric Films by Ar/C ₄ F ₈ Plasma. Japanese Journal of Applied Physics, 2012, 51, 076202.	1.5	Ο
42	Evaluation of Crystal Orientation for (K,Na)NbO ₃ Films Using X-ray Diffraction Reciprocal Space Map and Relationship between Crystal Orientation and Piezoelectric Coefficient. Japanese Journal of Applied Physics, 2012, 51, 075502.	1.5	0
43	Improvement of Piezoelectric Properties of (K,Na)NbO ₃ Films Deposited by Sputtering. Japanese Journal of Applied Physics, 2011, 50, 041503.	1.5	42
44	Effect of Lattice Strain and Improvement of the Piezoelectric Properties of (K,Na)NbO3Lead-Free Film. Japanese Journal of Applied Physics, 2010, 49, 09MA05.	1.5	23
45	Design Concept for the High Temperature Photoelectronic Devices Using SrTiO[sub 3]. Journal of the Electrochemical Society, 2009, 156, P107.	2.9	0
46	The Design Concept for High-Temperature Photo-Electronic Devices using SrTiO3. ECS Transactions, 2009, 16, 459-469.	0.5	0
47	The Barrier Formation Mechanism on SrTiO3 for High-Temperature Photo-Electronic Devices. ECS Transactions, 2009, 16, 451-458.	0.5	0
48	Defect equilibrium and electron transport in the bulk of single crystal SrTi1â^'Nb O3 (x= 0.01, 0.001,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
49	Electrical Properties of Nb-Doped SrTiO[sub 3] Ceramics with Excess TiO[sub 2] for SOFC Anodes and Interconnects. Journal of the Electrochemical Society, 2008, 155, B16.	2.9	15
50	Electrical Properties of Nb-Doped SrTiO3 Ceramics with Excess TiO2 for Anodes and Interconnects of SOFCs. ECS Transactions, 2007, 7, 1639-1644.	0.5	0
51	The influence of grain boundary on the conductivity of donor doped SrTiO3. Solid State Ionics, 2006, 177, 2555-2559.	2.7	15
52	Nb-Doped SrTiO3-Based High-Temperature Schottky Solar Cells. Japanese Journal of Applied Physics, 2005, 44, 8023-8026.	1.5	8
53	Estimation of Shockley–Read–Hall Lifetime in Homoepitaxial nâ€GaN on Lowâ€Dislocationâ€Density GaN Substrates Prepared by Hydride Vapor Phase Epitaxy and Maskless 3D. Physica Status Solidi (B): Basic Research, 0, , 2100215.	1.5	1
54	Uniformity characterization of SiC, GaN, and $\hat{l}\pm$ -Ga2O3 Schottky contacts using scanning internal photoemission microscopy. Japanese Journal of Applied Physics, 0, , .	1.5	1

#	Article	IF	CITATIONS
55	Mapping of contactless photoelectrochemical etched GaN Schottky contacts using scanning internal photoemission microscopy difference in electrolytes Japanese Journal of Applied Physics, 0, , .	1.5	1
56	No significant contribution of hole-trap-enhanced conductivity modulation in GaN p ⁺ n diodes formed on low-dislocation-density GaN substrates. Japanese Journal of Applied Physics, 0, , .	1.5	0
57	Models for Impurity Incorporation during Vapor-Phase Epitaxy. Materials Science Forum, 0, 1062, 3-7.	0.3	2