List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8182799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiology of Kidney Renin. Physiological Reviews, 2010, 90, 607-673.	28.8	227
2	Connexin40 Is Essential for the Pressure Control of Renin Synthesis and Secretion. Circulation Research, 2007, 100, 556-563.	4.5	197
3	Lack of Connexin 40 Causes Displacement of Renin-Producing Cells from Afferent Arterioles to the Extraglomerular Mesangium. Journal of the American Society of Nephrology: JASN, 2007, 18, 1103-1111.	6.1	104
4	Renin Release. Physiology, 2007, 22, 310-319.	3.1	96
5	Inhibition of the Renin-Angiotensin System Upregulates Cyclooxygenase-2 Expression in the Macula Densa. Hypertension, 1999, 34, 503-507.	2.7	95
6	Renin Release: Sites, Mechanisms, and Control. Annual Review of Physiology, 2011, 73, 377-399.	13.1	94
7	Cyclosporine A enhances renin secretion and production in isolated juxtaglomerular cells. Kidney International, 1988, 33, 947-953.	5.2	90
8	Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney International, 1993, 43, 815-823.	5.2	89
9	HIF-Prolyl Hydroxylases in the Rat Kidney. American Journal of Pathology, 2009, 174, 1663-1674.	3.8	89
10	Preserved macula densa-dependent renin secretion in A ₁ adenosine receptor knockout mice. American Journal of Physiology - Renal Physiology, 2003, 284, F770-F777.	2.7	75
11	Control of Renin Synthesis and Secretion. American Journal of Hypertension, 2012, 25, 839-847.	2.0	75
12	Selective deletion of Connexin 40 in renin-producing cells impairs renal baroreceptor function and is associated with arterial hypertension. Kidney International, 2010, 78, 762-768.	5.2	71
13	Adrenomedullin Stimulates Renin Release and Renin mRNA in Mouse Juxtaglomerular Granular Cells. Hypertension, 1997, 29, 1148-1155.	2.7	70
14	The Calcium Paradoxon of Renin Release. Circulation Research, 2006, 99, 1197-1206.	4.5	69
15	Furosemide stimulates macula densa cyclooxygenase-2 expression in rats. Kidney International, 2001, 59, 62-68.	5.2	65
16	Permissive role of nitric oxide in macula densa control of renin secretion. American Journal of Physiology - Renal Physiology, 2004, 286, F848-F857.	2.7	62
17	Coordinate changes of renin and brain-type nitric-oxide-synthase (b-NOS) mRNA levels in rat kidneys. Pflugers Archiv European Journal of Physiology, 1996, 432, 394-400.	2.8	60
18	Inhibition of COX-2 counteracts the effects of diuretics in rats. Kidney International, 2001, 60, 1684-1691.	5.2	60

#	Article	IF	CITATIONS
19	MULTIPLE SITE ESTIMATES OF ERYTHROPOIETIN AND RENIN IN POLYCYTHEMIC KIDNEY TRANSPLANT PATIENTS. Transplantation, 1990, 50, 613-616.	1.0	59
20	Cyclic AMP stimulates renin gene transcription in juxtaglomerular cells. Pflugers Archiv European Journal of Physiology, 2002, 444, 335-344.	2.8	59
21	Tissue hypoxygenation activates the adrenomedullin system in vivo. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R513-R519.	1.8	53
22	Connexin Expression in Renin-Producing Cells. Journal of the American Society of Nephrology: JASN, 2009, 20, 506-512.	6.1	53
23	Defective Cx40 Maintains Cx37 Expression but Intact Cx40 Is Crucial for Conducted Dilations Irrespective of Hypertension. Hypertension, 2012, 60, 1422-1429.	2.7	52
24	Influence of dietary NaCl intake on renin gene expression in the kidneys and adrenal glands of rats. Pflugers Archiv European Journal of Physiology, 1993, 425, 62-67.	2.8	51
25	Blood Pressure–Dependent Inhibition of Renin Secretion Requires A1 Adenosine Receptors. Hypertension, 2005, 46, 780-786.	2.7	51
26	Connexin 40 Mediates the Tubuloglomerular Feedback Contribution to Renal Blood Flow Autoregulation. Journal of the American Society of Nephrology: JASN, 2009, 20, 1577-1585.	6.1	51
27	Deletion of von Hippel–Lindau Protein Converts Renin-Producing Cells into Erythropoietin-Producing Cells. Journal of the American Society of Nephrology: JASN, 2013, 24, 433-444.	6.1	51
28	Inducible glomerular erythropoietin production in the adult kidney. Kidney International, 2015, 88, 1345-1355.	5.2	51
29	Substitution of connexin40 with connexin45 prevents hyperreninemia and attenuates hypertension. Kidney International, 2009, 75, 482-489.	5.2	50
30	Role of nitric oxide in the control of renin secretion. American Journal of Physiology - Renal Physiology, 1998, 275, F849-F862.	2.7	46
31	Development of vascular renin expression in the kidney critically depends on the cyclic AMP pathway. American Journal of Physiology - Renal Physiology, 2009, 296, F1006-F1012.	2.7	44
32	Erythropoietin. , 2011, 1, 1759-1794.		44
33	Tumor Necrosis Factor-α Activates NFκB to Inhibit Renin Transcription by Targeting cAMP-responsive Element. Journal of Biological Chemistry, 2004, 279, 1458-1467.	3.4	43
34	Rat Juxtaglomerular Cells are Endowed with DA-1 Dopamine Receptors Mediating Renin Release. Journal of Cardiovascular Pharmacology, 1988, 12, 658-663.	1.9	42
35	Is renin secretion governed by the calcium permeability of the juxtaglomerular cell membrane?. Biochemical and Biophysical Research Communications, 1984, 124, 359-366.	2.1	40
36	Opposite regulation of renin gene expression by cyclic AMP and calcium in isolated mouse juxtaglomerular cells. Kidney International, 1995, 47, 1266-1273.	5.2	38

#	Article	IF	CITATIONS
37	The Connexin40 A96S Mutation Causes Renin-Dependent Hypertension. Journal of the American Society of Nephrology: JASN, 2011, 22, 1031-1040.	6.1	38
38	Regulation of Erythropoietin Production. Contributions To Nephrology, 1988, 66, 1-16.	1.1	37
39	Role of calcium ions in the pressure control of renin secretion from the kidneys. Pflugers Archiv European Journal of Physiology, 1994, 428, 173-178.	2.8	37
40	Hypoxia up-regulates triosephosphate isomerase expression via a HIF-dependent pathway. Pflugers Archiv European Journal of Physiology, 2004, 448, 175-180.	2.8	35
41	High-Level Connexin Expression in the Human Juxtaglomerular Apparatus. Nephron Physiology, 2010, 116, p1-p8.	1.2	35
42	Erythropoietin production by PDGFR-β+ cells. Pflugers Archiv European Journal of Physiology, 2016, 468, 1479-1487.	2.8	34
43	Influence of hypoxia on hepatic and renal endothelin gene expression. Pflugers Archiv European Journal of Physiology, 1996, 431, 587-593.	2.8	33
44	Divergent regulation of vascular endothelial growth factor and of erythropoietin gene expression in vivo. Pflugers Archiv European Journal of Physiology, 1996, 431, 905-912.	2.8	33
45	Angiotensin II feedback is a regulator of renocortical renin, COX-2, and nNOS expression. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R1613-R1617.	1.8	33
46	Connexin 37 is dispensable for the control of the renin system and for positioning of renin-producing cells in the kidney. Pflugers Archiv European Journal of Physiology, 2009, 459, 151-158.	2.8	31
47	Different subpopulations of kidney interstitial cells produce erythropoietin and factors supporting tissue oxygenation in response to hypoxia inÂvivo. Kidney International, 2020, 98, 918-931.	5.2	31
48	Site of Erythropoietin Formation. Contributions To Nephrology, 1989, 76, 14-23.	1.1	30
49	Role of CREB1 and NFκB-p65 in the Down-regulation of Renin Gene Expression by Tumor Necrosis Factor α. Journal of Biological Chemistry, 2005, 280, 24356-24362.	3.4	30
50	Endothelium derived relaxing factor is involved in the pressure control of renin gene expression in the kidney. Pflugers Archiv European Journal of Physiology, 1994, 428, 261-268.	2.8	28
51	Disparate effects of calcium channel blockers on pressure dependence of renin secretion and flow in the isolated perfused rat kidney. Pflugers Archiv European Journal of Physiology, 1992, 421, 155-162.	2.8	27
52	Chronic Hypoxia-Inducible Transcription Factor-2 Activation Stably Transforms Juxtaglomerular Renin Cells into Fibroblast-Like Cells In Vivo. Journal of the American Society of Nephrology: JASN, 2015, 26, 587-596.	6.1	27
53	Lack of direct evidence for a functional role of voltage-operated calcium channels in juxtaglomerular cells. Pflugers Archiv European Journal of Physiology, 1990, 416, 281-287.	2.8	26
54	Differential regulation of cytosolic calcium between afferent arteriolar smooth muscle cells from mouse kidney. Pflugers Archiv European Journal of Physiology, 1995, 431, 46-51.	2.8	26

#	Article	IF	CITATIONS
55	Store-operated calcium influx inhibits renin secretion. American Journal of Physiology - Renal Physiology, 2000, 279, F170-F176.	2.7	26
56	Endothelins inhibit cyclic-AMP induced renin gene expression in cultured mouse juxtaglomerular cells. Kidney International, 1996, 50, 108-115.	5.2	25
57	Endothelium-Derived Nitric Oxide Supports Renin Cell Recruitment Through the Nitric Oxide–Sensitive Guanylate Cyclase Pathway. Hypertension, 2013, 61, 400-407.	2.7	24
58	Furosemide stimulates renin expression in the kidneys of salt-supplemented rats. Pflugers Archiv European Journal of Physiology, 1993, 424, 403-409.	2.8	23
59	Functional role of sodium-calcium exchange in the regulation of renal vascular resistance. American Journal of Physiology - Renal Physiology, 2001, 280, F155-F161.	2.7	23
60	Developmental renin expression in mice with a defective renin-angiotensin system. American Journal of Physiology - Renal Physiology, 2009, 297, F1371-F1380.	2.7	23
61	Renal connexins and blood pressure. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1903-1908.	2.6	23
62	Endocrine functions of the renal interstitium. Pflugers Archiv European Journal of Physiology, 2017, 469, 869-876.	2.8	23
63	Hypoxia-induced accumulation of erythropoietin mRNA in isolated hepatocytes is inhibited by protein kinase C. Pflugers Archiv European Journal of Physiology, 1994, 426, 21-30.	2.8	20
64	Cyclooxygenase 2 and neuronal nitric oxide synthase expression in the renal cortex are not interdependent in states of salt deficiency. Pflugers Archiv European Journal of Physiology, 2000, 441, 235-240.	2.8	20
65	Osmolarity-induced renin secretion from kidneys: evidence for readily releasable renin pools. American Journal of Physiology - Renal Physiology, 2006, 290, F797-F805.	2.7	20
66	Activation of Hypoxia Signaling in Stromal Progenitors Impairs Kidney Development. American Journal of Pathology, 2017, 187, 1496-1511.	3.8	20
67	Reciprocal expression of connexin 40 and 45 during phenotypical changes in renin-secreting cells. American Journal of Physiology - Renal Physiology, 2011, 300, F743-F748.	2.7	19
68	Role of blood pressure in mediating the influence of salt intake on renin expression in the kidney. American Journal of Physiology - Renal Physiology, 2012, 302, F1278-F1285.	2.7	19
69	Angiotensin II Short-Loop Feedback. Hypertension, 2018, 71, 1075-1082.	2.7	19
70	Inducible deletion of connexin 40 in adult mice causes hypertension and disrupts pressure control of renin secretion. Kidney International, 2015, 87, 557-563.	5.2	18
71	Connexins, renin cell displacement and hypertension. Current Opinion in Pharmacology, 2015, 21, 1-6.	3.5	18
72	Inhibition of transforming growth factor β1 signaling in resident interstitial cells attenuates profibrotic gene expression and preserves erythropoietin production during experimental kidney fibrosis in mice. Kidney International, 2021, 100, 122-137.	5.2	18

#	Article	IF	CITATIONS
73	Replacement of connexin 40 by connexin 45 causes ectopic localization of renin-producing cells in the kidney but maintains in vivo control of renin gene expression. American Journal of Physiology - Renal Physiology, 2009, 297, F403-F409.	2.7	17
74	Plasticity of renal endocrine function. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R455-R466.	1.8	16
75	Increased expression of cyclooxygenase 2 contributes to aberrant renin production in connexin 40-deficient kidneys. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1781-R1786.	1.8	14
76	Stimulation of renin secretion by NO donors is related to the cAMP pathway. American Journal of Physiology - Renal Physiology, 1998, 274, F709-F717.	2.7	13
77	Distribution and functional relevance of connexins in renin-producing cells. Pflugers Archiv European Journal of Physiology, 2013, 465, 71-77.	2.8	13
78	Localization of angiotensin II type 1 receptor gene expression in rodent and human kidneys. American Journal of Physiology - Renal Physiology, 2021, 320, F644-F653.	2.7	13
79	Prolylâ€4â€hydroxylases 2 and 3 control erythropoietin production in reninâ€expressing cells of mouse kidneys. Journal of Physiology, 2022, 600, 671-694.	2.9	13
80	Erythropoietin Production in Chronic Renal Disease before and after Transplantation. Contributions To Nephrology, 1990, 87, 15-25.	1.1	12
81	Structural analysis suggests that renin is released by compound exocytosis. Kidney International, 2013, 83, 233-241.	5.2	12
82	Extracellular calcium exerts a dual effect on renin secretion from isolated mouse juxtaglomerular cells. Pflugers Archiv European Journal of Physiology, 1993, 423-423, 14-20.	2.8	11
83	Role of potassium channels in the control of renin secretion from isolated perfused rat kidneys. Pflugers Archiv European Journal of Physiology, 2000, 440, 889-895.	2.8	11
84	COX-2-derived PGE2 triggers hyperplastic renin expression and hyperreninemia in aldosterone synthase-deficient mice. Pflugers Archiv European Journal of Physiology, 2018, 470, 1127-1137.	2.8	11
85	Differential regulation of renin and Cox-2 expression in the renal cortex of C57Bl/6 mice. Pflugers Archiv European Journal of Physiology, 2003, 447, 214-222.	2.8	9
86	The aldo-keto reductase AKR1B7 coexpresses with renin without influencing renin production and secretion. American Journal of Physiology - Renal Physiology, 2013, 304, F578-F584.	2.7	9
87	MEMBRANE AND SECRETORY PROPERTIES OF RENAL JUXTAGLOMERULAR GRANULAR CELLS. Clinical and Experimental Pharmacology and Physiology, 1997, 24, 536-540.	1.9	8
88	Connexin 43 is not essential for the control of renin synthesis and secretion. Pflugers Archiv European Journal of Physiology, 2014, 466, 1003-1009.	2.8	8
89	Connexin 40 is dispensable for vascular renin cell recruitment but is indispensable for vascular baroreceptor control of renin secretion. Pflugers Archiv European Journal of Physiology, 2015, 467, 1825-1834.	2.8	8
90	Procollagen I-expressing renin cell precursors. American Journal of Physiology - Renal Physiology, 2013, 305, F355-F361.	2.7	7

#	Article	IF	CITATIONS
91	Flexible and multifaceted: the plasticity of renin-expressing cells. Pflugers Archiv European Journal of Physiology, 2022, 474, 799-812.	2.8	7
92	Control of renin secretion from kidneys with renin cell hyperplasia. American Journal of Physiology - Renal Physiology, 2014, 306, F327-F332.	2.7	6
93	Pathophysiological mechanisms underlying a rat model of triple whammy acute kidney injury. Laboratory Investigation, 2020, 100, 1455-1464.	3.7	6
94	Apparently normal kidney development in mice with conditional disruption of ANG II-AT ₁ receptor genes in FoxD1-positive stroma cell precursors. American Journal of Physiology - Renal Physiology, 2019, 316, F1191-F1200.	2.7	5
95	Lack of connexin 40 decreases the calcium sensitivity of renin-secreting juxtaglomerular cells. Pflugers Archiv European Journal of Physiology, 2018, 470, 969-978.	2.8	4
96	Commentary for "human kidney pericytes produce renin― Kidney International, 2016, 90, 1153-1154.	5.2	3
97	CCR7 Is Important for Mesangial Cell Physiology and Repair. Journal of Histochemistry and Cytochemistry, 2018, 66, 7-22.	2.5	3
98	Phenotypic dissection of the mouse Ren1d knockout by complementation with human renin. Journal of Biological Chemistry, 2018, 293, 1151-1162.	3.4	3
99	Gap junctional communication via connexin40 is essential for the pressure control of the renin system. FASEB Journal, 2007, 21, A502.	0.5	3
100	Deciphering the physiological roles of COX-2. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R486-R487.	1.8	2
101	Salt Intake and the Nitric Oxide-Cyclic AMP Signaling Pathway in Renin Secreting Cells. American Journal of Hypertension, 2010, 23, 1157-1157.	2.0	1
102	Pflügers Archiv historical article—a new category of papers in Pflügers Archiv—European Journal of Physiology. Pflugers Archiv European Journal of Physiology, 2016, 468, 1113-1113.	2.8	1
103	Nobel Prizes 2017 and their impact for physiology. Pflugers Archiv European Journal of Physiology, 2018, 470, 211-212.	2.8	1
104	How can juxtaglomerular renin-producing cells support the integrity of glomerular endothelial cells?. Pflugers Archiv European Journal of Physiology, 2019, 471, 1161-1162.	2.8	1
105	Distinct phenotypes after cellâ€specific deletion of Cx40: Loss in endothelial cells impairs conduction in arterioles and loss in reninâ€producing cells elevates blood pressure. FASEB Journal, 2010, 24, 973.7.	0.5	1
106	Intact prostaglandin signaling through EP2 and EP4 receptors in stromal progenitor cells is required for normal development of the renal cortex in mice. American Journal of Physiology - Renal Physiology, 2022, , .	2.7	1
107	Pericytes on the move. Pflugers Archiv European Journal of Physiology, 2013, 465, 765-765.	2.8	0
108	Salty stories. Pflugers Archiv European Journal of Physiology, 2015, 467, 443-443.	2.8	0

#	Article	IF	CITATIONS
109	An editor's tribute to his predecessor. Pflugers Archiv European Journal of Physiology, 2016, 468, 157-157.	2.8	0
110	Celebrating 150-year anniversary!. Pflugers Archiv European Journal of Physiology, 2018, 470, 1719-1720.	2.8	0
111	Pflügers Archiv - European journal of physiology becomes the official journal of the German Physiological Society. Pflugers Archiv European Journal of Physiology, 2020, 472, 1657-1657.	2.8	0
112	TRANSGENIC MICE EXPRESSING CRE RECOMBINASE UNDER THE CONTROL OF THE HUMAN RENIN PROMOTER. FASEB Journal, 2006, 20, A344.	0.5	0
113	Influence of hypoxia on hepatic and renal endothelin gene expression. Pflugers Archiv European Journal of Physiology, 1996, 431, 587-593.	2.8	0
114	Pericytes on the move. Pflugers Archiv European Journal of Physiology, 2013, , .	2.8	0