List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8181312/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. Journal of Molecular Structure, 2007, 834-836, 445-453.	3.6	227
2	Dependence of nanocrystalline SnO2 particle size on synthesis route. Journal of Non-Crystalline Solids, 2002, 303, 270-280.	3.1	169
3	Influence of synthesis route on the formation of ZnO particles and their morphologies. Journal of Alloys and Compounds, 2007, 429, 242-249.	5.5	80
4	Properties of γ-FeOOH, α-FeOOH and α-Fe2O3 particles precipitated by hydrolysis of Fe3+ ions in perchlorate containing aqueous solutions. Journal of Alloys and Compounds, 2006, 417, 292-299.	5.5	78
5	Influence of chemical synthesis on the crystallization and properties of zinc oxide. Materials Chemistry and Physics, 2003, 77, 521-530.	4.0	77
6	Precipitation of ZnO particles and their properties. Materials Letters, 2005, 59, 2388-2393.	2.6	64
7	The atmospheric corrosion of iron as studied by Mössbauer spectroscopy. Corrosion Science, 1982, 22, 1089-1096.	6.6	63
8	Formation of nanosize ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate. Ceramics International, 2010, 36, 1117-1123.	4.8	50
9	Dependence of the microstructural properties of ZnO particles on their synthesis. Journal of Alloys and Compounds, 2008, 448, 277-283.	5.5	46
10	Influence of synthesis procedure on the morphology of bismuth oxide particles. Materials Letters, 2007, 61, 709-714.	2.6	44
11	Influence of ruthenium ions on the precipitation of α-FeOOH, α-Fe2O3 and Fe3O4 in highly alkaline media. Journal of Alloys and Compounds, 2006, 416, 284-290.	5.5	43
12	Cytotoxicity of nanosize V2O5 particles to selected fibroblast and tumor cells. Toxicology in Vitro, 2006, 20, 286-294.	2.4	38
13	Synthesis of Nanocrystalline Iron Oxide Particles in the Iron(III) Acetate/Alcohol/Acetic Acid System. European Journal of Inorganic Chemistry, 2008, 2008, 966-973.	2.0	38
14	The formation and microstructural properties of uniform $\hat{l}\pm$ -GaOOH particles and their calcination products. Journal of Alloys and Compounds, 2015, 620, 217-227.	5.5	38
15	The influence of Zn-dopant on the precipitation of α-FeOOH in highly alkaline media. Journal of Alloys and Compounds, 2006, 420, 260-268.	5.5	37
16	Synthesis and properties of iridium-doped hematite (α-Fe2O3). Journal of Alloys and Compounds, 2012, 545, 200-209.	5.5	37
17	Synthesis and properties of precipitated cobalt ferrite nanoparticles. Journal of Molecular Structure, 2017, 1140, 32-38.	3.6	36
18	57Fe Mössbauer, FT-IR and FE SEM investigation of the formation of hematite and goethite at high pH values. Journal of Molecular Structure. 2007. 834-836. 141-149.	3.6	33

#	Article	IF	CITATIONS
19	Photokilling Squamous Carcinoma Cells SCCVII with Ultrafine Particles of Selected Metal Oxides. Journal of Sol-Gel Science and Technology, 2003, 27, 225-233.	2.4	32
20	Spectroscopic characterization of chrysotile asbestos from different regions. Journal of Molecular Structure, 2011, 993, 120-126.	3.6	32
21	Formation and microstructure of nickel oxide films. Journal of Alloys and Compounds, 2012, 541, 238-243.	5.5	32
22	Influence of Sn doping on the structural, magnetic, optical and photocatalytic properties of hematite (α-Fe2O3) nanoparticles. Journal of Physics and Chemistry of Solids, 2022, 161, 110372.	4.0	30
23	The influence of Cd-dopant on the properties of α-FeOOH and α-Fe2O3 particles precipitated in highly alkaline media. Journal of Alloys and Compounds, 2007, 431, 56-64.	5.5	29
24	Microstructural changes in particles detected during the transformation from β-FeOOH to α-Fe2O3 in dense aqueous suspensions. Journal of Alloys and Compounds, 2008, 464, 81-88.	5.5	29
25	Phase development of the ZrO2–ZnO system during the thermal treatments of amorphous precursors. Journal of Molecular Structure, 2009, 924-926, 225-234.	3.6	28
26	Morphological and Ultrastructural Comparative Analysis of Bone Tissue After Er:YAG Laser and Surgical Drill Osteotomy. Photomedicine and Laser Surgery, 2014, 32, 401-408.	2.0	27
27	Synthesis and properties of indium-doped hematite. Journal of Alloys and Compounds, 2017, 695, 1900-1907.	5.5	27
28	Microstructural characterizations of different Mn-oxide nanoparticles used as models in toxicity studies. Journal of Molecular Structure, 2013, 1044, 248-254.	3.6	26
29	Precipitation of α-Fe2O3 from dense β-FeOOH suspensions with added ammonium amidosulfonate. Journal of Molecular Structure, 2009, 924-926, 235-242.	3.6	25
30	Thermal decomposition of synthetic ammonium jarosite. Journal of Molecular Structure, 2005, 744-747, 295-300.	3.6	24
31	Influence of copper ions on the precipitation of goethite and hematite in highly alkaline media. Journal of Molecular Structure, 2007, 834-836, 154-161.	3.6	24
32	Formation and characterisation of nanosize α-Rh2O3 particles. Journal of Molecular Structure, 2009, 924-926, 221-224.	3.6	24
33	Formation of hollow ZnO particles by simple hydrolysis of zinc acetylacetonate. Ceramics International, 2012, 38, 6047-6052.	4.8	24
34	Influence of Ni-dopant on the properties of synthetic goethite. Journal of Alloys and Compounds, 2005, 403, 368-375.	5.5	23
35	Monitoring the hydrothermal precipitation of α-Fe2O3 from concentrated Fe(NO3)3 solutions partially neutralized with NaOH. Journal of Molecular Structure, 2011, 993, 115-119.	3.6	23
36	Formation of AgFeO2, α-FeOOH, and Ag2O from mixed Fe(NO3)3–AgNO3 solutions at high pH. Journal of Molecular Structure, 2013, 1044, 221-230.	3.6	23

#	Article	IF	CITATIONS
37	Effects of Cu doping on the microstructural, thermal, optical and photocatalytic properties of α-FeOOH and α-Fe2O3 1D nanoparticles. Journal of Alloys and Compounds, 2019, 802, 290-300.	5.5	23
38	Influence of Mn-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media. Journal of Alloys and Compounds, 2006, 426, 327-334.	5.5	22
39	Effect of phosphate on the morphology and size of α-Fe2O3 particles crystallized from dense β-FeOOH suspensions. Journal of Alloys and Compounds, 2008, 466, 498-506.	5.5	22
40	Varying the microstructural properties of ZnO particles using different synthesis routes. Journal of Molecular Structure, 2011, 993, 219-224.	3.6	21
41	Synthesis and long-term phase stability of Mn3O4 nanoparticles. Journal of Molecular Structure, 2013, 1044, 255-261.	3.6	21
42	Mechanism of ZrTiO4 Synthesis by Mechanochemical Processing of TiO2 and ZrO2. Journal of the American Ceramic Society, 2006, 89, 060427083300025-???.	3.8	20
43	Formation of Iron Oxides by Surface Oxidation of Iron Plate. Croatica Chemica Acta, 0, , 117-124.	0.4	20
44	Influence of Nanocrystallization on the Electronic Conductivity of Zinc Iron Phosphate Glass. Journal of the American Ceramic Society, 2012, 95, 303-311.	3.8	19
45	The synthesis and microstructure of goethite particles precipitated in highly alkaline media. Journal of Alloys and Compounds, 2013, 559, 49-56.	5.5	19
46	The effect of temperature on the crystallization of α-Fe2O3 particles from dense β-FeOOH suspensions. Materials Chemistry and Physics, 2010, 120, 160-166.	4.0	18
47	Composite Photopolymerization with Diode Laser. Operative Dentistry, 2007, 32, 279-284.	1.2	17
48	Thermal behavior of the amorphous precursors of the ZrO2–SnO2 system. Materials Research Bulletin, 2008, 43, 2855-2871.	5.2	17
49	The influence of a Cr-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media. Journal of Alloys and Compounds, 2009, 469, 336-342.	5.5	17
50	The effect of iridium(III) ions on the formation of iron oxides in a highly alkaline medium. Journal of Alloys and Compounds, 2012, 516, 207-216.	5.5	17
51	Synthesis and microstructural properties of mixed iron–gallium oxides. Journal of Alloys and Compounds, 2015, 634, 130-141.	5.5	17
52	Formation of RuO2 nanoparticles by thermal decomposition of Ru(NO)(NO3)3. Ceramics International, 2015, 41, 7811-7815.	4.8	16
53	Photo-Fenton degradation of methylene blue using hematite-enriched slag under visible light. Journal of Radioanalytical and Nuclear Chemistry, 2020, 325, 537-549.	1.5	16
54	Influence of Cr doping on the structural, magnetic, optical and photocatalytic properties of α-Fe2O3 nanorods. Journal of Physics and Chemistry of Solids, 2021, 148, 109699.	4.0	16

#	Article	IF	CITATIONS
55	Preparation and characterization of hollow α-Fe2O3 irregular microspheres. Materials Letters, 2010, 64, 2555-2558.	2.6	15
56	Nano/microstructure and optical properties of ZnO particles precipitated from zinc acetylacetonate. Journal of Molecular Structure, 2015, 1090, 121-128.	3.6	15
57	Growth of uniform lath-like α-(Fe,Al)OOH and disc-like α-(Fe,Al)2O3 nanoparticles in a highly alkaline medium. Materials Chemistry and Physics, 2010, 123, 67-76.	4.0	14
58	Effect of Cu2+ ion incorporation on the phase development of ZrO2-type solid solutions during the thermal treatments. Journal of Alloys and Compounds, 2010, 491, 536-544.	5.5	14
59	Development of porous α-Fe2O3 microstructure by forced hydrolysis of FeCl3 solutions in the presence of AOT. Journal of Alloys and Compounds, 2012, 532, 41-48.	5.5	14
60	Synthesis and microstructural properties of α-Fe1â^'xGaxOOH solid solutions. Journal of Alloys and Compounds, 2013, 581, 335-343.	5.5	14
61	A novel route in the synthesis of magnetite nanoparticles. Materials Letters, 2013, 100, 93-97.	2.6	14
62	Development of ZnO microstructures produced by rapid hydrolysis of zinc acetylacetonate. Ceramics International, 2014, 40, 10953-10959.	4.8	14
63	Microstructural Analysis of Boehmite Nanoparticles Prepared by Rapid Hydrolysis of Aluminum Sec-butoxide. Croatica Chemica Acta, 2011, , 481-485.	0.4	13
64	A simple route in the synthesis of CdS nanoparticles. Materials Letters, 2013, 109, 179-181.	2.6	13
65	Hydrothermal processing of electrospun fibers in the synthesis of 1D ZnO nanoparticles. Materials Letters, 2016, 176, 278-281.	2.6	13
66	Synthesis and properties of 1D manganese-doped hematite particles. Journal of Alloys and Compounds, 2018, 767, 504-511.	5.5	13
67	The improved corrosion resistance of steel in water after abrasive blasting with alumina. Corrosion Science, 1984, 24, 197-201.	6.6	12
68	Synthesis and microstructure of porous Mn-oxides. Journal of Molecular Structure, 2009, 924-926, 243-247.	3.6	12
69	Influence of low-spin Co3+ for high-spin Fe3+ substitution on the structural, magnetic, optical and catalytic properties of hematite (I±-Fe2O3) nanorods. Journal of Physics and Chemistry of Solids, 2021, 152, 109929.	4.0	12
70	Spectroscopic and electron microscopic investigation of iron oxides formed in a highly alkaline medium in the presence of rhodium ions. Journal of Molecular Structure, 2010, 976, 61-68.	3.6	11
71	The effects of In 3+ doping on the properties of precipitated goethite. Journal of Alloys and Compounds, 2016, 658, 41-48.	5.5	11
72	57Fe Mössbauer, XRD, FT-IR, FE SEM Analyses of Natural Goethite, Hematite and Siderite. Croatica Chemica Acta, 2017, 90, .	0.4	11

#	Article	IF	CITATIONS
73	Hydrothermal Synthesis of Platinum Group Metal Nanoparticles. Croatica Chemica Acta, 0, , 465-468.	0.4	11
74	Formation of porous α-Fe2O3 microstructure by thermal decomposition of Fe(IO3)3. Journal of Alloys and Compounds, 2006, 425, 384-389.	5.5	10
75	Investigation of solid phase upon \hat{I}^3 -irradiation of ferrihydrite-ethanol suspension. Radiation Physics and Chemistry, 2011, 80, 792-798.	2.8	10
76	Local Site Distribution of Oxygen in Silicon-Rich Oxide Thin Films: A Tool to Investigate Phase Separation. Journal of Physical Chemistry C, 2012, 116, 10039-10047.	3.1	10
77	The effect of experimental conditions on the microstructure of hematite particles precipitated by the forced hydrolysis of FeCl3 solutions. Journal of Molecular Structure, 2013, 1044, 290-298.	3.6	9
78	The influence of CTAB and gum arabic on the precipitation of α-FeOOH in a highly alkaline medium. Journal of Molecular Structure, 2015, 1090, 129-137.	3.6	9
79	The relationship between local structure and photo-Fenton catalytic ability of glasses and glass-ceramics prepared from Japanese slag. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 751-761.	1.5	9
80	Synthesis and properties of Sn-doped Î \pm -FeOOH nanoparticles. Chemical Papers, 2021, 75, 6355-6366.	2.2	8
81	Synthesis of Mn3O4 nanoparticles and their application to cancer cells. Collection of Czechoslovak Chemical Communications, 2009, 74, 1351-1360.	1.0	8
82	The Influence of Experimental Conditions on the Formation of ZnO Fibers by Electrospinning. Croatica Chemica Acta, 2014, 87, 315-320.	0.4	7
83	The formation of ZnO nanoparticles from zinc gluconate. Ceramics International, 2015, 41, 4975-4981.	4.8	7
84	Formation and characterization of ribbon-like RuO2/Ru fibers. Materials Letters, 2015, 156, 142-145.	2.6	7
85	Synthesis and properties of nanostructured Cr-doped hematite fibres. Chemical Papers, 2020, 74, 4345-4353.	2.2	7
86	Formation of iron oxides in a highly alkaline medium in the presence of palladium ions. Journal of Molecular Structure, 2009, 924-926, 201-207.	3.6	6
87	Thermal decomposition of hydrated salts of Ni(II)-acetate and Ni(II)-lactate. Journal of Molecular Structure, 2013, 1044, 231-238.	3.6	6
88	The effect of carboxylic acids on the oxidation of coated iron oxide nanoparticles. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	6
89	The influence of platinum(IV) ions on the formation of iron oxides in a highly alkaline medium. Journal of Molecular Structure, 2011, 993, 382-389.	3.6	5
90	Dependence of NiO microstructure on the electrospinning conditions. Ceramics International, 2014, 40, 10119-10123.	4.8	5

#	Article	IF	CITATIONS
91	The effect of sodium polyanethol sulfonate on the precipitation of zinc oxide. Journal of Alloys and Compounds, 2017, 694, 1331-1337.	5.5	5
92	Denitration of simulated radioactive liquid waste. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 1477-1485.	1.5	4
93	Construction of Sensor for Submicromolar Detection of Riboflavin by Surface Modification of SPCE with Thermal Degradation Products of Nickel Acetate Tetrahydrate. Electroanalysis, 0, , .	2.9	4
94	Highly covalent Felll–O bonding in photo-Fenton active Sn-doped goethite nanoparticles. Materials Chemistry and Physics, 2022, 287, 126247.	4.0	4
95	Low Temperature Deposition of SiNx Thin Films by the LPCVD Method. Croatica Chemica Acta, 0, , 97-100.	0.4	3
96	57Fe Mössbauer spectroscopic study and magnetic properties of 1D Fe(IO3)3 particles and their thermal decomposition to α-Fe2O3. Materials Letters, 2018, 227, 47-50.	2.6	3
97	Synthesis of nanocrystalline eskolaite via grimaldiite. Chemical Papers, 2021, 75, 735-741.	2.2	3
98	Forced hydrolysis of FeCl3 solutions in the presence of Cr3+ ions. Journal of Physics and Chemistry of Solids, 2021, 156, 110166.	4.0	3
99	Hydrolysis of Fe(III) in the presence of mixed anions and promoters. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 1293-1302.	1.5	3
100	Microstructural Properties of Natural Allophane/Gibbsite from a White Bauxite Deposit in Montenegro. Croatica Chemica Acta, 2018, 91, .	0.4	3
101	Formation of Oxide Phases in the System Pr-Fe-O. Croatica Chemica Acta, 2013, 86, 281-285.	0.4	2
102	Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods. Croatica Chemica Acta, 2018, 91, .	0.4	2
103	Forced hydrolysis of FeCl3 solutions in the presence of sodium dextran sulphate. Colloid and Polymer Science, 2019, 297, 177-182.	2.1	2
104	Electrospun Ti-doped haematite fibres and their properties. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	2
105	Microstructural and magnetic properties of electrospun hematite/cuprospinel composites. Journal of Materials Science: Materials in Electronics, 2020, 31, 9812-9825.	2.2	2
106	The Effect of Gum Arabic on the Nano / Microstructure and Optical Properties of Precipitated ZnO. Croatica Chemica Acta, 2017, 90, .	0.4	2
107	Monitoring of the Forced Hydrolysis of FeCl3 Solutions in the Presence of Sodium Dodecyl Sulphate. Croatica Chemica Acta, 2018, 91, .	0.4	2
108	Influence of erbium doping on the structural, magnetic and optical properties of hematite (α-Fe2O3) nanorods. Journal of Physics and Chemistry of Solids, 2022, , 110857.	4.0	2

#	Article	IF	CITATIONS
109	A novel route for the synthesis of nanosize particles of metallic palladium. Materials Letters, 2008, 62, 4369-4370.	2.6	1
110	One-pot synthesis and properties of Mn-doped maghemite nanoparticles using acetylacetonate precursors. Journal of Radioanalytical and Nuclear Chemistry, 2021, 328, 1181-1187.	1.5	1
111	Forced hydrolysis of FeCl3 solutions in the presence of guanylurea phosphate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 634, 128047.	4.7	1