Rodolphe Fischmeister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8180112/publications.pdf

Version: 2024-02-01

180 papers 10,724 citations

20817 60 h-index 98 g-index

190 all docs

190 docs citations

190 times ranked 7475 citing authors

#	Article	IF	CITATIONS
1	Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 1197-1201.	7.1	452
2	cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 295-299.	7.1	360
3	Compartmentation of Cyclic Nucleotide Signaling in the Heart. Circulation Research, 2006, 99, 816-828.	4.5	334
4	Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature, 1986, 323, 273-275.	27.8	327
5	Cyclic Guanosine Monophosphate Compartmentation in Rat Cardiac Myocytes. Circulation, 2006, 113, 2221-2228.	1.6	247
6	Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature, 1991, 351, 573-576.	27.8	229
7	Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle Journal of Physiology, 1986, 376, 183-202.	2.9	194
8	Cyclic guanosine 3',5'â€monophosphate regulates the calcium current in single cells from frog ventricle Journal of Physiology, 1987, 387, 453-472.	2.9	185
9	The cAMP binding protein Epac modulates Ca2+sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. Journal of Physiology, 2007, 583, 685-694.	2.9	179
10	Crosstalk between Rap1 and Rac regulates secretion of sAPPα. Nature Cell Biology, 2003, 5, 633-639.	10.3	174
11	Nitric oxide regulates the calcium current in isolated human atrial myocytes Journal of Clinical Investigation, 1995, 95, 794-802.	8.2	171
12	Signal transduction by cGMP in heart. Basic Research in Cardiology, 1991, 86, 503-514.	5.9	168
13	Muscarinic and \hat{I}^2 -adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nature Medicine, 1999, 5, 331-334.	30.7	164
14	Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. British Journal of Pharmacology, 1999, 127, 65-74.	5.4	163
15	A Specific Pattern of Phosphodiesterases Controls the cAMP Signals Generated by Different G s -Coupled Receptors in Adult Rat Ventricular Myocytes. Circulation Research, 2006, 98, 1081-1088.	4.5	160
16	Calcium-mediated inactivation of the calcium conductance in cesium-loaded frog heart cells Journal of General Physiology, 1984, 83, 105-131.	1.9	145
17	Spatiotemporal Dynamics of \hat{l}^2 -Adrenergic cAMP Signals and L-Type Ca ²⁺ Channel Regulation in Adult Rat Ventricular Myocytes. Circulation Research, 2008, 102, 1091-1100.	4.5	143
18	Cyclic GMP regulates the Ca-channel current in guinea pig ventricular myocytes. Pflugers Archiv European Journal of Physiology, 1989, 413, 685-687.	2.8	136

#	Article	IF	Citations
19	Cloning, Expression, and Pharmacology of Four Human 5â€Hydroxytryptamine ₄ Receptor Isoforms Produced by Alternative Splicing in the Carboxyl Terminus. Journal of Neurochemistry, 1998, 70, 2252-2261.	3.9	136
20	Cyclic GMP regulation of the Lâ€type Ca ²⁺ channel current in human atrial myocytes. Journal of Physiology, 2001, 533, 329-340.	2.9	135
21	Negative Feedback Exerted by cAMP-dependent Protein Kinase and cAMP Phosphodiesterase on Subsarcolemmal cAMP Signals in Intact Cardiac Myocytes. Journal of Biological Chemistry, 2004, 279, 52095-52105.	3.4	128
22	Real-Time Assessment of Myocardial Contractility Using Shear Wave Imaging. Journal of the American College of Cardiology, 2011, 58, 65-72.	2.8	127
23	Regulation of myocardial calcium channels by cyclic AMP metabolism. Basic Research in Cardiology, 1996, 91, 1-8.	5.9	125
24	Mouse Bestrophin-2 Is a Bona fide Clâ^' Channel. Journal of General Physiology, 2004, 123, 327-340.	1.9	125
25	PDEs create local domains of cAMP signaling. Journal of Molecular and Cellular Cardiology, 2012, 52, 323-329.	1.9	123
26	Treatments targeting inotropy. European Heart Journal, 2019, 40, 3626-3644.	2.2	123
27	Anti-SSA/Ro52 autoantibodies blocking the cardiac 5-HT4serotoninergic receptor could explain neonatal lupus congenital heart block. European Journal of Immunology, 2000, 30, 2782-2790.	2.9	119
28	Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels. Comparative Biochemistry and Physiology Part A, Molecular & Empty Integrative Physiology, 2005, 142, 136-143.	1.8	117
29	Phosphodiesterase-2 Is Up-Regulated in Human Failing Hearts and Blunts \hat{l}^2 -Adrenergic Responses in Cardiomyocytes. Journal of the American College of Cardiology, 2013, 62, 1596-1606.	2.8	115
30	cGMP-stimulated cyclic nucleotide phosphodiesterase regulates the basal calcium current in human atrial myocytes Journal of Clinical Investigation, 1997, 99, 2710-2718.	8.2	110
31	Glucagon stimulates the cardiac Ca2+ current by activation of adenylyl cyclase and inhibition of phosphodiesterase. Nature, 1990, 345, 158-161.	27.8	108
32	SL65.0155, A Novel 5-Hydroxytryptamine4 Receptor Partial Agonist with Potent Cognition-Enhancing Properties. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 731-741.	2.5	106
33	Volume sensitivity of the bestrophin family of chloride channels. Journal of Physiology, 2005, 562, 477-491.	2.9	106
34	Decreased Expression and Activity of cAMP Phosphodiesterases in Cardiac Hypertrophy and Its Impact on \hat{l}^2 -Adrenergic cAMP Signals. Circulation Research, 2009, 105, 784-792.	4.5	106
35	5-HT ₄ Receptor Ligands:  Applications and New Prospects. Journal of Medicinal Chemistry, 2003, 46, 319-344.	6.4	105
36	Cyclic Adenosine Monophosphate Phosphodiesterase Type 4 Protects Against Atrial Arrhythmias. Journal of the American College of Cardiology, 2012, 59, 2182-2190.	2.8	105

#	Article	IF	CITATIONS
37	Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias in mice. Journal of Clinical Investigation, 2011, 121, 2651-2661.	8.2	105
38	Cardiac Specific Increase in Aldosterone Production Induces Coronary Dysfunction in Aldosterone Synthase–Transgenic Mice. Circulation, 2004, 110, 1819-1825.	1.6	102
39	The Human Serotonin 5-HT4 Receptor Regulates Secretion of Non-amyloidogenic Precursor Protein. Journal of Biological Chemistry, 2001, 276, 44881-44888.	3.4	100
40	Identification of a Tetrahydroquinoline Analog as a Pharmacological Inhibitor of the cAMP-binding Protein Epac. Journal of Biological Chemistry, 2012, 287, 44192-44202.	3.4	93
41	Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Archives of Cardiovascular Diseases, 2016, 109, 431-443.	1.6	93
42	Inactivation, reactivation and pacing dependence of calcium current in frog cardiocytes: correlation with current density Journal of Physiology, 1988, 401, 201-226.	2.9	91
43	Quantitative mRNA analysis of five C-terminal splice variants of the human 5-HT4 receptor in the central nervous system by TaqMan real time RT-PCR. Molecular Brain Research, 2001, 90, 125-134.	2.3	91
44	Molecular and functional characterization of a 5â€HT ₄ receptor cloned from human atrium. FEBS Letters, 1997, 412, 465-474.	2.8	87
45	Feedback Control Through cGMP-Dependent Protein Kinase Contributes to Differential Regulation and Compartmentation of cGMP in Rat Cardiac Myocytes. Circulation Research, 2010, 107, 1232-1240.	4.5	86
46	A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death. Cell Death and Disease, 2016, 7, e2198-e2198.	6.3	85
47	\hat{l}^2 3-adrenergic receptor activation increases human atrial tissue contractility and stimulates the L-type Ca2+ current. Journal of Clinical Investigation, 2008, 118 , 3219 - 27 .	8.2	83
48	Atrial natriuretic factor regulates the calcium current in frog isolated cardiac cells Circulation Research, 1988, 62, 660-667.	4.5	77
49	Functional expression of the hyperpolarizationâ€activated, nonâ€selective cation current I f in immortalized HLâ€1 cardiomyocytes. Journal of Physiology, 2002, 545, 81-92.	2.9	76
50	Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised reporting for model reproducibility, interoperability, and data sharing. Progress in Biophysics and Molecular Biology, 2011, 107, 4-10.	2.9	75
51	Phosphoinositide 3-Kinase γ Protects Against Catecholamine-Induced Ventricular Arrhythmia Through Protein Kinase A–Mediated Regulation of Distinct Phosphodiesterases. Circulation, 2012, 126, 2073-2083.	1.6	74
52	G proteinâ€mediated inhibitory effect of a nitric oxide donor on the Lâ€type Ca 2+ current in rat ventricular myocytes. Journal of Physiology, 2001, 531, 117-130.	2.9	72
53	Direct regulation of cardiac Ca2+ channels by G proteins: neither proven nor necessary?. Trends in Pharmacological Sciences, 1992, 13, 380-385.	8.7	68
54	Functional expression and regulation of the hyperpolarization activated nonâ€selective cation current in embryonic stem cellâ€derived cardiomyocytes. Journal of Physiology, 2000, 523, 377-389.	2.9	67

#	Article	IF	CITATIONS
55	Isolation of the serotoninergic 5â€HT _{4(e)} receptor from human heart and comparative analysis of its pharmacological profile in C6â€glial and CHO cell lines. British Journal of Pharmacology, 2000, 129, 771-781.	5.4	65
56	Cyclic AMP compartmentation due to increased cAMPâ€phosphodiesterase activity in transgenic mice with a cardiacâ€directed expression of the human adenylyl cyclase type 8 (AC8). FASEB Journal, 2003, 17, 1380-1391.	0.5	65
57	Local response of Lâ€type Ca 2+ current to nitric oxide in frog ventricular myocytes. Journal of Physiology, 2001, 534, 109-121.	2.9	63
58	Cyclic AMP phosphodiesterases and Ca2+ current regulation in cardiac cells. Life Sciences, 1991, 48, 2365-2376.	4.3	62
59	Simultaneous measurements of intracellular cAMP and Lâ€type Ca 2+ current in single frog ventricular myocytes. Journal of Physiology, 2001, 530, 79-91.	2.9	62
60	Role of cyclic nucleotide phosphodiesterase isoforms in cAMP compartmentation following Â2-adrenergic stimulation of ICa,L in frog ventricular myocytes. Journal of Physiology, 2003, 551, 239-252.	2.9	62
61	Rate-limiting steps in the beta-adrenergic stimulation of cardiac calcium current Journal of General Physiology, 1993, 101, 337-353.	1.9	60
62	Muscarinic regulation of the L-type calcium current in isolated cardiac myocytes. Life Sciences, 1997, 60, 1113-1120.	4.3	60
63	Constitutive dimerization of human serotonin 5â€HT ₄ receptors in living cells. FEBS Letters, 2005, 579, 2973-2980.	2.8	60
64	The (R)-enantiomer of CE3F4 is a preferential inhibitor of human exchange protein directly activated by cyclic AMP isoform 1 (Epac1). Biochemical and Biophysical Research Communications, 2013, 440, 443-448.	2.1	56
65	Sequential Changes in Autonomic Regulation of Cardiac Myocytes after <i>In Vivo</i> Injection in Rat. American Journal of Respiratory and Critical Care Medicine, 1999, 160, 1196-1204.	5.6	55
66	Cardiovascular effects of Urtica dioica L. in isolated rat heart and aorta. Phytotherapy Research, 2002, 16, 503-507.	5.8	55
67	Cyclic AMP synthesis and hydrolysis in the normal and failing heart. Pflugers Archiv European Journal of Physiology, 2014, 466, 1163-1175.	2.8	55
68	Phosphodiesterase 2 Protects Against Catecholamine-Induced Arrhythmia and Preserves Contractile Function After Myocardial Infarction. Circulation Research, 2017, 120, 120-132.	4.5	55
69	Agonistâ€independent effects of muscarinic antagonists on Ca2+ and K+ currents in frog and rat cardiac cells Journal of Physiology, 1993, 461, 743-765.	2.9	54
70	Some limitations of the cell-attached patch clamp technique: a two-electrode analysis. Pflugers Archiv European Journal of Physiology, 1986, 406, 73-82.	2.8	53
71	Decreased sarcolipin protein expression and enhanced sarco(endo)plasmic reticulum Ca2+ uptake in human atrial fibrillation. Biochemical and Biophysical Research Communications, 2011, 410, 97-101.	2.1	53
72	Interactive effects of isoprenaline, forskolin and acetylcholine on Ca2+ current in frog ventricular myocytes Journal of Physiology, 1989, 417, 213-239.	2.9	52

#	Article	IF	Citations
73	Induction of neonatal lupus in pups of mice immunized with synthetic peptides derived from amino acid sequences of the serotoninergic 5-HT4 receptor. European Journal of Immunology, 2001, 31, 573-579.	2.9	51
74	Two transmembrane Cys residues are involved in 5-HT4 receptor dimerization. Biochemical and Biophysical Research Communications, 2007, 356, 642-647.	2.1	51
75	Channel currents during spontaneous action potentials in embryonic chick heart cells. The action potential patch clamp. Biophysical Journal, 1984, 46, 267-271.	0.5	50
76	Exploration of the ligand binding site of the human 5-HT4 receptor by site-directed mutagenesis and molecular modeling. British Journal of Pharmacology, 2000, 130, 527-538.	5.4	49
77	Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomedicine and Pharmacotherapy, 2017, 93, 62-69.	5. 6	49
78	Role of the NO-cGMP pathway in the muscarinic regulation of the L-type Ca2+current in human atrial myocytes. Journal of Physiology, 1998, 506, 653-663.	2.9	48
79	Pharmacological characterization of the human 5â€HT _{4(d)} receptor splice variant stably expressed in Chinese hamster ovary cells. British Journal of Pharmacology, 2000, 131, 827-835.	5.4	48
80	Design and Synthesis of Specific Probes for Human 5-HT ₄ Receptor Dimerization Studies. Journal of Medicinal Chemistry, 2005, 48, 6220-6228.	6.4	48
81	A new regulation of IL-6 production in adult cardiomyocytes by \hat{l}^2 -adrenergic and IL- $1\hat{l}^2$ receptors and induction of cellular hypertrophy by IL-6 trans-signalling. Cellular Signalling, 2010, 22, 1143-1152.	3. 6	47
82	Cardiac Overexpression of PDE4B Blunts \hat{l}^2 -Adrenergic Response and Maladaptive Remodeling in Heart Failure. Circulation, 2020, 142, 161-174.	1.6	47
83	Augmentation of cardiac contractility with no change in Lâ€type Ca 2+ current in transgenic mice with a cardiacâ€directed expression of the human adenylyl cyclase type 8 (AC8). FASEB Journal, 2002, 16, 1636-1638.	0.5	46
84	Identification of optimal reference genes for transcriptomic analyses in normal and diseased human heart. Cardiovascular Research, 2018, 114, 247-258.	3.8	46
85	Differential regulation of cardiac excitation–contraction coupling by cAMP phosphodiesterase subtypes. Cardiovascular Research, 2013, 100, 336-346.	3.8	45
86	Regulation of the amyloid precursor protein ectodomain shedding by the 5â€HT ₄ receptor and Epac. FEBS Letters, 2005, 579, 1136-1142.	2.8	44
87	Post-translational modifications of cardiac tubulin during chronic heart failure in the rat. Molecular and Cellular Biochemistry, 2002, 237, 39-46.	3.1	42
88	New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy. Journal of Medical Genetics, 2006, 44, e70-e70.	3.2	41
89	Functional localization of cAMP signalling in cardiac myocytes. Biochemical Society Transactions, 2006, 34, 484-488.	3.4	39
90	Changes in external Na induce a membrane current related to the Na-Ca exchange in cesium-loaded frog heart cells Journal of General Physiology, 1984, 84, 201-220.	1.9	38

#	Article	IF	Citations
91	Arbutus unedo induces endothelium-dependent relaxation of the isolated rat aorta. Phytotherapy Research, 2002, 16, 572-575.	5.8	37
92	New insights into the human 5-HT4 receptor binding site: exploration of a hydrophobic pocket. British Journal of Pharmacology, 2004, 143, 361-370.	5.4	37
93	Variation of intracellular Ca2+ following Ca2+ current in heart. A theoretical study of ionic diffusion inside a cylindrical cell. Biophysical Journal, 1983, 41, 341-348.	0.5	36
94	Positive and negative inotropic effects of NO donors in atrial and ventricular fibres of the frog heart. Journal of Physiology, 1999, 518, 449-461.	2.9	36
95	Post-translational modifications of tubulin and microtubule stability in adult rat ventricular myocytes and immortalized HL-1 cardiomyocytes. Molecular and Cellular Biochemistry, 2004, 258, 35-48.	3.1	36
96	Tannins and catechin gallate mediate the vasorelaxant effect of Arbutus unedo on the rat isolated aorta. Phytotherapy Research, 2004, 18, 889-894.	5.8	36
97	A comparative study of the effects of three guanylyl cyclase inhibitors on the L-type Ca2+ and muscarinic K+ currents in frog cardiac myocytes. British Journal of Pharmacology, 1997, 121, 1369-1377.	5.4	35
98	Methylene Blue Is a Muscarinic Antagonist in Cardiac Myocytes. Molecular Pharmacology, 1997, 52, 482-490.	2.3	34
99	Is cAMP Good or Bad?. Circulation Research, 2006, 98, 582-584.	4.5	34
100	Characterization of human 5â€HT _{4(d)} receptor desensitization in CHO cells. British Journal of Pharmacology, 2003, 138, 445-452.	5.4	32
101	Quantitative mRNA analysis of serotonin 5-HT4 receptor isoforms, calcium handling proteins and ion channels in human atrial fibrillation. Biochemical and Biophysical Research Communications, 2007, 357, 218-224.	2.1	32
102	Interventricular Differences in βâ€Adrenergic Responses in the Canine Heart: Role of Phosphodiesterases. Journal of the American Heart Association, 2014, 3, e000858.	3.7	32
103	Calmodulin kinase II inhibition limits the pro-arrhythmic Ca2+waves induced by cAMP-phosphodiesterase inhibitors. Cardiovascular Research, 2016, 110, 151-161.	3.8	30
104	Cardiac adenylyl cyclase overexpression precipitates and aggravates age-related myocardial dysfunction. Cardiovascular Research, 2019, 115, 1778-1790.	3.8	30
105	Progression of excitation-contraction coupling defects in doxorubicin cardiotoxicity. Journal of Molecular and Cellular Cardiology, 2019, 126, 129-139.	1.9	30
106	The 5-HT4 receptor antagonist ML10375 inhibits the constitutive activity of human 5-HT4(c) receptor. British Journal of Pharmacology, 1998, 125, 595-597.	5.4	29
107	NO donors potentiate the βâ€adrenergic stimulation oflCa,Land the muscarinic activation oflK,AChin rat cardiac myocytes. Journal of Physiology, 2002, 540, 411-424.	2.9	28
108	Antihypertensive and endothelium-dependent vasodilator effects of aqueous extract of Cistus ladaniferus. Biochemical and Biophysical Research Communications, 2009, 389, 145-149.	2.1	28

#	Article	IF	Citations
109	Control of cytoplasmic and nuclear protein kinase A by phosphodiesterases and phosphatases in cardiac myocytes. Cardiovascular Research, 2014, 102, 97-106.	3.8	28
110	Pharmacological characterization of the receptors involved in the \hat{I}^2 -adrenoceptor-mediated stimulation of the L-type Ca2+ current in frog ventricular myocytes. British Journal of Pharmacology, 1997, 121, 1277-1286.	5.4	27
111	Abnormal sodium current properties contribute to cardiac electrical and contractile dysfunction in a mouse model of myotonic dystrophy type 1. Neuromuscular Disorders, 2015, 25, 308-320.	0.6	26
112	Acetylcholine inhibits Ca2+ current by acting exclusively at a site proximal to adenylyl cyclase in frog cardiac myocytes Journal of Physiology, 1996, 491, 669-675.	2.9	25
113	lon channels as effectors of cyclic nucleotide pathways: Functional relevance for arterial tone regulation., 2020, 209, 107499.		25
114	Differential functional effects of two 5-HT receptor isoforms in adult cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2005, 39, 335-344.	1.9	24
115	Fibroblast growth factor 23 decreases PDE4 expression in heart increasing the risk of cardiac arrhythmia; Klotho opposes these effects. Basic Research in Cardiology, 2020, 115, 51.	5.9	23
116	Cyclic GMP modulating drugs in cardiovascular diseases: mechanism-based network pharmacology. Cardiovascular Research, 2022, 118, 2085-2102.	3.8	23
117	Binding constants determined from Ca2+ current responses to rapid applications and washouts of nifedipine in frog cardiac myocytes Journal of Physiology, 1996, 494, 105-120.	2.9	21
118	Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2870-2884.	4.1	20
119	Cyclic nucleotide signalling compartmentation by PDEs in cultured vascular smooth muscle cells. British Journal of Pharmacology, 2019, 176, 1780-1792.	5.4	20
120	Alteration of vascular reactivity in heart failure: role of phosphodiesterases 3 and 4. British Journal of Pharmacology, 2014, 171, 5361-5375.	5.4	19
121	Late onset heart failure after childhood chemotherapy. European Heart Journal, 2019, 40, 798-800.	2.2	18
122	Î ² -Adrenergic cAMP Signals Are Predominantly Regulated by Phosphodiesterase Type 4 in Cultured Adult Rat Aortic Smooth Muscle Cells. PLoS ONE, 2012, 7, e47826.	2.5	17
123	Peroxynitrite is a positive inotropic agent in atrial and ventricular fibres of the frog heart. Journal of Physiology, 1999, 521, 375-388.	2.9	16
124	PDE4 and mAKAPÎ ² are nodal organizers of Î ² 2-ARs nuclear PKA signalling in cardiac myocytes. Cardiovascular Research, 2018, 114, 1499-1511.	3.8	16
125	Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model. Journal of Molecular and Cellular Cardiology, 2019, 133, 57-66.	1.9	16
126	Differential effects of pertussis toxin on the muscarinic regulation of Ca2+ and K+ currents in frog cardiac myocytes Journal of General Physiology, 1994, 104, 941-959.	1.9	15

#	Article	IF	Citations
127	PDE2 regulates membrane potential, respiration and permeability transition of rodent subsarcolemmal cardiac mitochondria. Mitochondrion, 2019, 47, 64-75.	3.4	15
128	Effect of Serotonin4(5-HT4) Receptor Agonists on Aldosterone Secretion in Idiopathic Hyperaldosteronism. Endocrine Research, 2000, 26, 583-587.	1.2	14
129	New Arylpiperazine Derivatives as Antagonists of the Human Cloned 5-HT4 Receptor Isoforms. Journal of Medicinal Chemistry, 2000, 43, 3761-3769.	6.4	14
130	Immunomodulation by maternal autoantibodies of the fetal serotoninergic 5-HT4 receptor and its consequences in early BALB/c mouse embryonic development. BMC Developmental Biology, 2007, 7, 34.	2.1	14
131	RNA-binding protein CUGBP1 regulates insulin secretion via activation of phosphodiesterase 3B in mice. Diabetologia, 2016, 59, 1959-1967.	6.3	14
132	Carboxy-terminal fragment of fibroblast growth factor 23 induces heart hypertrophy in sickle cell disease. Haematologica, 2017, 102, e33-e35.	3.5	14
133	Phosphodiesterase 2: anti-adrenergic friend or hypertrophic foe in heart disease?. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 1139-1141.	3.0	13
134	A dual effect of cardiac glycosides on Ca current in single cells of frog heart. Pflugers Archiv European Journal of Physiology, 1986, 406, 340-342.	2.8	12
135	Cyclic AMP signaling in cardiac myocytes. Current Opinion in Physiology, 2018, 1, 161-171.	1.8	12
136	CSRP3 mediates polyphenols-induced cardioprotection in hypertension. Journal of Nutritional Biochemistry, 2019, 66, 29-42.	4.2	12
137	Sympathetic Modulation of the Effect of Nifedipine on Myocardial Contraction and Ca Current in the Rat. Journal of Molecular and Cellular Cardiology, 1997, 29, 579-591.	1.9	11
138	Phosphodiesterase types 3 and 4 regulate the phasic contraction of neonatal rat bladder smooth myocytes via distinct mechanisms. Cellular Signalling, 2014, 26, 1001-1010.	3.6	10
139	Inhibit a Phosphodiesterase to Treat Heart Failure?. Circulation, 2018, 138, 2003-2006.	1.6	10
140	A loudspeaker-driven system for rapid and multiple solution exchanges in patch-clamp experiments. Pflugers Archiv European Journal of Physiology, 1992, 420, 529-535.	2.8	9
141	A comparative analysis of the time course of cardiac Ca2+ current response to rapid applications of ?-adrenergic and dihydropyridine agonists. Naunyn-Schmiedeberg's Archives of Pharmacology, 1993, 348, 197-206.	3.0	9
142	Functional studies of the 5′-untranslated region of human 5-HT4 receptor mRNA. Biochemical Journal, 2005, 387, 463-471.	3.7	9
143	Mapping genetic changes in the cAMP-signaling cascade in human atria. Journal of Molecular and Cellular Cardiology, 2021, 155, 10-20.	1.9	9
144	Longitudinal distribution of Na+and Ca2+channels and \hat{l}^2 -adrenoceptors on the sarcolemmal membrane of frog cardiomyocytes. Journal of Physiology, 1997, 503, 471-477.	2.9	8

#	Article	IF	CITATIONS
145	Influence of cell confluence on the cAMP signalling pathway in vascular smooth muscle cells. Cellular Signalling, 2017, 35, 118-128.	3.6	7
146	Contribution of BKCa channels to vascular tone regulation by PDE3 and PDE4 is lost in heart failure. Cardiovascular Research, 2019, 115, 130-144.	3.8	7
147	Characterization of Serotonin4 Receptors in Adrenocortical Aldosterone-Producing Adenomas: In Vivo and in Vitro Studies. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1211-1216.	3.6	7
148	Metabolic inhibition reduces cardiac L-type Ca2+ channel current due to acidification caused by ATP hydrolysis. PLoS ONE, 2017, 12, e0184246.	2.5	7
149	Imipramine as an alternative to formamide to detubulate rat ventricular cardiomyocytes. Experimental Physiology, 2019, 104, 1237-1249.	2.0	6
150	Selective changes in cytosolic \hat{l}^2 -adrenergic cAMP signals and L-type Calcium Channel regulation by Phosphodiesterases during cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2021, 150, 109-121.	1.9	6
151	Cyclic nucleotide signaling and pacemaker activity. Progress in Biophysics and Molecular Biology, 2021, 166, 29-38.	2.9	6
152	Regulation of cardiac Ca2+ channels by cGMP and NO. Developments in Cardiovascular Medicine, 1996, , 93-105.	0.1	6
153	Slow inward Ca current in frog heart: theoretical evidence against a voltage-dependent inactivation. Canadian Journal of Physiology and Pharmacology, 1982, 60, 1185-1192.	1.4	5
154	Identification of PDE1 and PDE5 in adult rat left ventricular cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2007, 42, S49-S50.	1.9	5
155	Acute cardiac effects of neuregulin-1/ErbB signalling. Cardiovascular Research, 2010, 88, 393-394.	3.8	5
156	Metabolic Inhibition Induces Transient Increase of L-type Ca2+ Current in Human and Rat Cardiac Myocytes. International Journal of Molecular Sciences, 2019, 20, 1501.	4.1	5
157	Enzymatic Assays for Probing Mitochondrial Apoptosis. Methods in Molecular Biology, 2015, 1265, 407-414.	0.9	5
158	Real-Time Monitoring of Cyclic Nucleotide Changes in Living Cells. , 2019, , 1-17.		3
159	5-HT4 Receptor Ligands: Applications and New Prospects. ChemInform, 2003, 34, no.	0.0	2
160	Cyclic Nucleotide Phosphodiesterases and Compartmentation in Normal and Diseased Heart. Cardiac and Vascular Biology, 2017, , 97-116.	0.2	1
161	Role of PDE3 and PDE4 for \hat{I}^2 -adrenergic control of cAMP and ICa,L in adult rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2007, 42, S49.	1.9	О
162	Decreased phosphodiesterase activities in cardiac hypertrophy: Consequences for \hat{l}^2 -aR regulation of cAMP and ICa,L. Journal of Molecular and Cellular Cardiology, 2007, 42, S129.	1.9	0

#	Article	IF	Citations
163	cAMP increases autocrine IL-1-induced IL-6 production in cardiomyocytes leading to hypertrophic signal transduction pathways. Journal of Molecular and Cellular Cardiology, 2008, 44, 781-782.	1.9	O
164	PDE4B is the predominant PDE4 isoform regulating the L-type Ca2+ current in mouse ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2008, 44, 803.	1.9	0
165	Simultaneous Recordings of Cell Shortening and cAMP or Calcium Transients Reveal Differential Regulation of Cardiac Contractility by Specific Phosphodiesterases. Biophysical Journal, 2009, 96, 12a.	0.5	O
166	Dynamic and quantitative assessment of myocardial stiffness using Shear Wave Imaging. , 2010, , .		0
167	Response to Letter by Hamilton et al. Circulation Research, 2011, 108, .	4.5	O
168	Spatiotemporal Regulation of cAMP-Dependent Protein Kinase (PKA) in Cardiac Myocytes. Biophysical Journal, 2012, 102, 668a.	0.5	0
169	Pro-Arrhythmic Calcium Waves Induced by Phosphodiesterase Type 4 Inhibition upon Beta-Adrenergic Stimulation Involve Both PKA and CamkII. Biophysical Journal, 2014, 106, 323a.	0.5	O
170	î²-Adrenergic Regulation of Cyclic AMP and Ca Current at the T-Tubules and Surface Membrane in Rat Cardiomyocytes. Biophysical Journal, 2014, 106, 304a.	0.5	0
171	P334Identification of suitable reference genes for gene expression studies in normal and pathological human heart tissues. Cardiovascular Research, 2014, 103, S61.1-S61.	3.8	O
172	Loss of PI3K-Gamma Scaffold Function causes Severe Electrical Remodeling in Mice Ventricular Myocytes. Biophysical Journal, 2015, 108, 272a-273a.	0.5	0
173	Cardiac-Specific Overexpression of Phosphodiesterase 2 (PDE2) in Mouse is Cardioprotective. Biophysical Journal, 2016, 110, 599a.	0.5	O
174	Differential Regulation of Cytoplasmic and Nuclear PKA Activities by \hat{l}^21 - and \hat{l}^22 -Adrenoceptors in Adult Cardiac Myocytes. Biophysical Journal, 2016, 110, 591a.	0.5	0
175	Regulation of Cardiac Pacemaker Activity by PDE4 Isoforms. Biophysical Journal, 2017, 112, 96a-97a.	0.5	O
176	Response by Vandecasteele et al to Letter Regarding Article, "Cardiac Overexpression of PDE4B Blunts β-Adrenergic Response and Maladaptive Remodeling in Heart Failure― Circulation, 2021, 143, e26-e27.	1.6	0
177	Role of Phosphodiesterases in Cyclic Nucleotide Compartmentation in Cardiac Myocytes., 2006,,.		O
178	Compartmentation of cAMP in Cardiomyocytes., 2010,, 1581-1587.		0
179	CaV1.2 and \hat{I}^2 -Adrenergic Regulation of Cardiac Function. , 2014, , 371-381.		O
180	EHNA as an Inhibitor of PDE2: A Pharmacological and Biochemical Study in Cardiac Myocytes. , 1996 , , $81\text{-}88$.		0