Mustafa Supur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8179988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hot hole transfer from Ag nanoparticles to multiferroic YMn ₂ O ₅ nanowires enables superior photocatalytic activity. Journal of Materials Chemistry C, 2022, 10, 4128-4139.	5.5	7
2	A Simple, Semiclassical Mechanism for Activationless, Long RangeCharge Transport in Molecular Junctions. ECS Journal of Solid State Science and Technology, 2022, 11, 045009.	1.8	1
3	Hot carrier photocatalysis using bimetallic Au@Pt hemispherical core–shell nanoislands. Journal of Materials Science: Materials in Electronics, 2022, 33, 18134-18155.	2.2	2
4	Evaluation of Carbon Based Molecular Junctions as Practical Photosensors. ACS Sensors, 2021, 6, 513-522.	7.8	11
5	Electrostatic Redox Reactions and Charge Storage in Molecular Electronic Junctions. Journal of Physical Chemistry C, 2020, 124, 1739-1748.	3.1	9
6	Comment on "Extent of conjugation in diazonium-derived layers in molecular junction devices determined by experiment and modelling―by C. Van Dyck, A. J. Bergren, V. Mukundan, J. A. Fereiro and G. A. DiLabio, Phys. Chem. Chem. Phys., 2019, 21, 16762. Physical Chemistry Chemical Physics, 2020, 22, 21543-21546.	2.8	1
7	Ion-Assisted Resonant Injection and Charge Storage in Carbon-Based Molecular Junctions. Journal of the American Chemical Society, 2020, 142, 11658-11662.	13.7	19
8	Lightâ€ S timulated Charge Transport in Bilayer Molecular Junctions for Photodetection. Advanced Optical Materials, 2019, 7, 1901053.	7.3	20
9	Bottom-up, Robust Graphene Ribbon Electronics in All-Carbon Molecular Junctions. ACS Applied Materials & Interfaces, 2018, 10, 6090-6095.	8.0	23
10	Hybrid Graphene Ribbon/Carbon Electrodes for Highâ€Performance Energy Storage. Advanced Energy Materials, 2018, 8, 1802439.	19.5	23
11	Characterization of Growth Patterns of Nanoscale Organic Films on Carbon Electrodes by Surface Enhanced Raman Spectroscopy. Analytical Chemistry, 2017, 89, 6463-6471.	6.5	26
12	lonic manipulation of charge-transfer and photodynamics of [60]fullerene confined in pyrrolo-tetrathiafulvalene cage. Chemical Communications, 2017, 53, 9898-9901.	4.1	6
13	Remarkable enhancement of ambient-air electrical conductivity of the perylenediimide π-stacks isolated in the flexible films of a hydrogen-bonded polymer. RSC Advances, 2015, 5, 64240-64246.	3.6	4
14	Broadband Light Harvesting and Fast Charge Separation in Ordered Self-Assemblies of Electron Donor–Acceptor-Functionalized Graphene Oxide Layers for Effective Solar Energy Conversion. Journal of Physical Chemistry C, 2015, 119, 13488-13495.	3.1	17
15	Creation of Superheterojunction Polymers via Direct Polycondensation: Segregated and Bicontinuous Donor–Acceptor π-Columnar Arrays in Covalent Organic Frameworks for Long-Lived Charge Separation. Journal of the American Chemical Society, 2015, 137, 7817-7827.	13.7	213
16	Graphene oxide–Li ⁺ @C ₆₀ donor–acceptor composites for photoenergy conversion. Physical Chemistry Chemical Physics, 2015, 17, 15732-15738.	2.8	10
17	Long-lived charge separation in a rigid pentiptycene bis(crown) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 107 15796-15798.	7 Td (ether 4.1	r)–Li <sup 16</sup
18	Photoinduced charge separation in ordered self-assemblies of perylenediimide–graphene oxide hybrid lavers. Chemical Communications, 2014, 50, 13359-13361.	4.1	17

Mustafa Supur

#	Article	IF	CITATIONS
19	Robust Inclusion Complexes of Crown Ether Fused Tetrathiafulvalenes with Li + @C 60 to Afford Efficient Photodriven Charge Separation. Chemistry - A European Journal, 2014, 20, 13976-13983.	3.3	14
20	Tuning the photodriven electron transport within the columnar perylenediimide stacks by changing the π-extent of the electron donors. Physical Chemistry Chemical Physics, 2013, 15, 2539.	2.8	14
21	Charge Dynamics in A Donor–Acceptor Covalent Organic Framework with Periodically Ordered Bicontinuous Heterojunctions. Angewandte Chemie - International Edition, 2013, 52, 2017-2021.	13.8	263
22	Enhancement of Photodriven Charge Separation by Conformational and Intermolecular Adaptations of an Anthracene–Perylenediimide–Anthracene Triad to an Aqueous Environment. Journal of Physical Chemistry C, 2013, 117, 12438-12445.	3.1	25
23	Energy and Electron Transfer of One-Dimensional Nanomaterials of Perylenediimides. ECS Journal of Solid State Science and Technology, 2013, 2, M3051-M3062.	1.8	14
24	Excitation energy transfer from non-aggregated molecules to perylenediimide nanoribbons via ionic interactions in water. Journal of Materials Chemistry, 2012, 22, 12547.	6.7	9
25	Photodriven Electron Transport within the Columnar Perylenediimide Nanostructures Self-Assembled with Sulfonated Porphyrins in Water. Journal of Physical Chemistry C, 2012, 116, 23274-23282.	3.1	38
26	Electron Delocalization in One-Dimensional Perylenediimide Nanobelts through Photoinduced Electron Transfer. Journal of Physical Chemistry C, 2011, 115, 15040-15047.	3.1	30
27	Syntheses, Electrochemistry, and Photodynamics of Ferrocene–Azadipyrromethane Donor–Acceptor Dyads and Triads. Journal of Physical Chemistry A, 2011, 115, 9810-9819.	2.5	69
28	Elongation of Lifetime of the Charge-Separated State of Ferrocene–Naphthalenediimide–[60]Fullerene Triad via Stepwise Electron Transfer. Journal of Physical Chemistry A, 2011, 115, 14430-14437.	2.5	33
29	Photochemical Charge Separation in Closely Positioned Donor–Boron Dipyrrin–Fullerene Triads. Chemistry - A European Journal, 2011, 17, 3147-3156.	3.3	59
30	Efficient Electron Transfer Processes of the Covalently Linked Perylenediimideâ^'Ferrocene Systems: Femtosecond and Nanosecond Transient Absorption Studies. Journal of Physical Chemistry C, 2010, 114, 10969-10977.	3.1	34
31	A New Cyanofluorene–Triphenylamine Copolymer: Synthesis and Photoinduced Intramolecular Electron Transfer Processes. Chemistry - A European Journal, 2009, 15, 10818-10824.	3.3	9