
Anping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8179348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging Negative Warming Impacts on Tibetan Crop Yield. Engineering, 2022, 14, 163-168.	6.7	6
2	Contrasting Responses of Soil Inorganic Carbon to Afforestation in Acidic Versus Alkaline Soils. Global Biogeochemical Cycles, 2022, 36, .	4.9	8
3	Large net forest loss in Cambodia's Tonle Sap Lake protected areas during 1992–2019. Ambio, 2022, 51, 1889-1903.	5.5	5
4	Role of Organic and Conservation Agriculture in Ammonia Emissions and Crop Productivity in China. Environmental Science & Technology, 2022, 56, 2977-2989.	10.0	23
5	Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nature Communications, 2022, 13, 1250.	12.8	19
6	Occurrence of crop pests and diseases has largely increased in China since 1970. Nature Food, 2022, 3, 57-65.	14.0	39
7	Warming and Increased Respiration Have Transformed an Alpine Steppe Ecosystem on the Tibetan Plateau From a Carbon Dioxide Sink Into a Source. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	5
8	Policy-enabled stabilization of nitrous oxide emissions from livestock production in China over 1978–2017. Nature Food, 2022, 3, 356-366.	14.0	20
9	Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nature Climate Change, 2022, 12, 581-586.	18.8	47
10	Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion. Nature Ecology and Evolution, 2022, 6, 890-899.	7.8	72
11	Timing and Order of Extreme Drought and Wetness Determine Bioclimatic Sensitivity of Tree Growth. Earth's Future, 2022, 10, .	6.3	7
12	Photosynthesis phenology, as defined by solar-induced chlorophyll fluorescence, is overestimated by vegetation indices in the extratropical Northern Hemisphere. Agricultural and Forest Meteorology, 2022, 323, 109027.	4.8	17
13	Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons. Nature Communications, 2022, 13, .	12.8	8
14	Moisture availability mediates the relationship between terrestrial gross primary production and solarâ€induced chlorophyll fluorescence: Insights from globalâ€scale variations. Global Change Biology, 2021, 27, 1144-1156.	9.5	57
15	Deforestation-induced warming over tropical mountain regions regulated by elevation. Nature Geoscience, 2021, 14, 23-29.	12.9	73
16	Soil moisture seasonality alters vegetation response to drought in the Mongolian Plateau. Environmental Research Letters, 2021, 16, 014050.	5.2	15
17	Dataâ€driven estimates of global litter production imply slower vegetation carbon turnover. Global Change Biology, 2021, 27, 1678-1688.	9.5	8
18	Optimizing livestock carrying capacity for wild ungulate-livestock coexistence in a Qinghai-Tibet Plateau grassland. Scientific Reports, 2021, 11, 3635.	3.3	11

#	Article	IF	CITATIONS
19	Seasonal biological carryover dominates northern vegetation growth. Nature Communications, 2021, 12, 983.	12.8	45
20	Multifaceted characteristics of dryland aridity changes in a warming world. Nature Reviews Earth & Environment, 2021, 2, 232-250.	29.7	281
21	Reply to: Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nature Ecology and Evolution, 2021, 5, 736-737.	7.8	1
22	Unusual characteristics of the carbon cycle during the 2015â^2016 El Niño. Global Change Biology, 2021, 27, 3798-3809.	9.5	6
23	Divergent Response of Vegetation Growth to Soil Water Availability in Dry and Wet Periods Over Central Asia. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005912.	3.0	17
24	Spring and autumn phenology across the Tibetan Plateau inferred from normalized difference vegetation index and solar-induced chlorophyll fluorescence. Big Earth Data, 2021, 5, 182-200.	4.4	30
25	Increased vigilance of plains zebras (Equus quagga) in response to more bush coverage in a Kenyan savanna. Climate Change Ecology, 2021, 1, 100001.	1.9	5
26	Seasonal changes in GPP/SIF ratios and their climatic determinants across the Northern Hemisphere. Global Change Biology, 2021, 27, 5186-5197.	9.5	34
27	Interannual variability and climatic sensitivity of global wildfire activity. Advances in Climate Change Research, 2021, 12, 686-695.	5.1	9
28	Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Global Change Biology, 2021, 27, 1942-1951.	9.5	60
29	Local and teleconnected temperature effects of afforestation and vegetation greening in China. National Science Review, 2020, 7, 897-912.	9.5	60
30	Dynamics of greenhouse gas emission induced by different burrowing activities of fossorial vertebrates in the Qinghai–Tibetan Plateau alpine meadow ecosystem. International Journal of Biometeorology, 2020, 64, 115-122.	3.0	2
31	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
32	Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science Advances, 2020, 6, eaax0255.	10.3	258
33	Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 2020, 1, 14-27.	29.7	889
34	Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22249-22255.	7.1	63
35	High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability, 2020, 3, 564-570.	23.7	391
36	The 400â€year natural history of a tropical coastal mangroveâ€fringed lagoon: What can we learn?. Global Change Biology, 2020, 26, 3185-3187.	9.5	0

#	Article	IF	CITATIONS
37	Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nature Ecology and Evolution, 2020, 4, 1075-1083.	7.8	134
38	Divergent responses of soil organic carbon to afforestation. Nature Sustainability, 2020, 3, 694-700.	23.7	118
39	Spatial Variation of Reactive Nitrogen Emissions From China's Croplands Codetermined by Regional Urbanization and Its Feedback to Global Climate Change. Geophysical Research Letters, 2020, 47, e2019GL086551.	4.0	18
40	Comparing community birdwatching and professional bird monitoring with implications for avian diversity research: a case study of Suzhou, China. Avian Research, 2020, 11, .	1.2	5
41	Spatiotemporal dynamics of ecosystem fires and biomass burning-induced carbon emissions in China over the past two decades. Geography and Sustainability, 2020, 1, 47-58.	4.3	14
42	Divergent changes in the elevational gradient of vegetation activities over the last 30 years. Nature Communications, 2019, 10, 2970.	12.8	119
43	Determinants of the ratio of actual to potential evapotranspiration. Global Change Biology, 2019, 25, 1326-1343.	9.5	39
44	The impacts of climate extremes on the terrestrial carbon cycle: A review. Science China Earth Sciences, 2019, 62, 1551-1563.	5.2	134
45	Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 2019, 25, 1922-1940.	9.5	944
46	The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agricultural and Forest Meteorology, 2019, 269-270, 239-248.	4.8	199
47	Environmental controls on soil pH in planted forest and its response to nitrogen deposition. Environmental Research, 2019, 172, 159-165.	7.5	78
48	A reversal in global terrestrial stilling and its implications for wind energy production. Nature Climate Change, 2019, 9, 979-985.	18.8	246
49	Strong but Intermittent Spatial Covariations in Tropical Land Temperature. Geophysical Research Letters, 2019, 46, 356-364.	4.0	9
50	Mapping global forest biomass and its changes over the first decade of the 21st century. Science China Earth Sciences, 2019, 62, 585-594.	5.2	6
51	A new estimation of China's net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agricultural and Forest Meteorology, 2018, 253-254, 84-93.	4.8	58
52	Afforestation neutralizes soil pH. Nature Communications, 2018, 9, 520.	12.8	140
53	Global patterns of vegetation carbon use efficiency and their climate drivers deduced from MODIS satellite data and process-based models. Agricultural and Forest Meteorology, 2018, 256-257, 150-158.	4.8	69
54	Impacts of climate on the biodiversity-productivity relationship in natural forests. Nature Communications, 2018, 9, 5436.	12.8	54

#	Article	IF	CITATIONS
55	Consumption of atmospheric methane by the Qinghai–Tibet Plateau alpine steppe ecosystem. Cryosphere, 2018, 12, 2803-2819.	3.9	15
56	Negative effect of nitrogen addition on soil respiration dependent on stand age: Evidence from a 7-year field study of larch plantations in northern China. Agricultural and Forest Meteorology, 2018, 262, 24-33.	4.8	27
57	Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nature Geoscience, 2018, 11, 556-562.	12.9	168
58	Divergent hydrological response to large-scale afforestation and vegetation greening in China. Science Advances, 2018, 4, eaar4182.	10.3	287
59	Regional patterns of future runoff changes from Earth system models constrained by observation. Geophysical Research Letters, 2017, 44, 5540-5549.	4.0	26
60	Carbon Storage and Sequestration of Urban Street Trees in Beijing, China. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	43
61	Responses of land evapotranspiration to Earth's greening in CMIP5 Earth System Models. Environmental Research Letters, 2016, 11, 104006.	5.2	46
62	Density-dependent speciation alters the structure and dynamics of neutral communities. Journal of Theoretical Biology, 2015, 372, 128-134.	1.7	1
63	Fertilization regulates the response of wheat yield to interannual temperature variation in North China. Journal of Plant Ecology, 2015, 8, 523-529.	2.3	4
64	Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 2015, 6, 6911.	12.8	384
65	Seasonally different response of photosynthetic activity to daytime and nightâ€ŧime warming in the Northern Hemisphere. Global Change Biology, 2015, 21, 377-387.	9.5	72
66	Regional air pollution brightening reverses the greenhouse gases induced warmingâ€elevation relationship. Geophysical Research Letters, 2015, 42, 4563-4572.	4.0	30
67	Early post-fire regeneration of a fire-prone subtropical mixed Yunnan pine forest in Southwest China: Effects of pre-fire vegetation, fire severity and topographic factors. Forest Ecology and Management, 2015, 356, 31-40.	3.2	37
68	A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature, 2014, 506, 212-215.	27.8	284
69	Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 2014, 5, 5018.	12.8	414
70	Environmental determinants of tropical forest and savanna distribution: A quantitative model evaluation and its implication. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1432-1445.	3.0	22
71	Species-Independent Down-Regulation of Leaf Photosynthesis and Respiration in Response to Shading: Evidence from Six Temperate Tree Species. PLoS ONE, 2014, 9, e91798.	2.5	15
72	Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 2013, 501, 88-92.	27.8	482

#	Article	IF	CITATIONS
73	Why abundant tropical tree species are phylogenetically old. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16039-16043.	7.1	15
74	Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: A modeling analysis. Agricultural and Forest Meteorology, 2013, 178-179, 46-55.	4.8	130
75	Speciation Rates Decline through Time in Individual-Based Models of Speciation and Extinction. American Naturalist, 2013, 182, E83-E93.	2.1	16
76	Committed changes in tropical tree cover under the projected 21st century climate change. Scientific Reports, 2013, 3, 1951.	3.3	20
77	No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2329.	7.1	103
78	Global Priority Conservation Areas in the Face of 21st Century Climate Change. PLoS ONE, 2013, 8, e54839.	2.5	38
79	Comment on "Global Correlations in Tropical Tree Species Richness and Abundance Reject Neutrality― Science, 2012, 336, 1639-1639.	12.6	4
80	Spatio-temporal patterns of the area experiencing negative vegetation growth anomalies in China over the last three decades. Environmental Research Letters, 2012, 7, 035701.	5.2	65
81	Spring vegetation green-up date in China inferred from SPOT NDVI data: A multiple model analysis. Agricultural and Forest Meteorology, 2012, 165, 104-113.	4.8	222
82	Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology, 2011, 151, 1599-1608.	4.8	442
83	Forest annual carbon cost: reply. Ecology, 2011, 92, 1998-2002.	3.2	3
84	NDVI indicated characteristics of vegetation cover change in China's metropolises over the last three decades. Environmental Monitoring and Assessment, 2011, 179, 1-14.	2.7	119
85	Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1240-1245.	7.1	432
86	Recent change of vegetation growth trend in China. Environmental Research Letters, 2011, 6, 044027.	5.2	255
87	Forest annual carbon cost: a globalâ€scale analysis of autotrophic respiration. Ecology, 2010, 91, 652-661.	3.2	171
88	Unlocking the forest inventory data: relating individual tree performance to unmeasured environmental factors. , 2010, 20, 684-699.		37
89	Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Global Change Biology, 2009, 15, 2723-2729.	9.5	135
90	Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 2008, 451, 49-52.	27.8	930

#	Article	IF	CITATIONS
91	WHITE SPRUCE MEETS BLACK SPRUCE: DISPERSAL, POSTFIRE ESTABLISHMENT, AND GROWTH IN A WARMING CLIMATE. Ecological Monographs, 2008, 78, 489-505.	5.4	47
92	Terrestrial vegetation carbon sinks in China, 1981–2000. Science in China Series D: Earth Sciences, 2007, 50, 1341-1350.	0.9	466
93	Effect of climate and CO2changes on the greening of the Northern Hemisphere over the past two decades. Geophysical Research Letters, 2006, 33, .	4.0	207
94	Ecological and political costs of river diversion. Nature, 2004, 429, 501-501.	27.8	1
95	Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998. Science, 2001, 292, 2320-2322.	12.6	1,202