Winston Timp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8178482/publications.pdf

Version: 2024-02-01

81	9,095	35	79
papers	citations	h-index	g-index
118	118	118	12255
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The complete sequence of a human genome. Science, 2022, 376, 44-53.	6.0	1,222
2	Increased methylation variation in epigenetic domains across cancer types. Nature Genetics, 2011, 43, 768-775.	9.4	968
3	Detecting DNA cytosine methylation using nanopore sequencing. Nature Methods, 2017, 14, 407-410.	9.0	820
4	Telomere-to-telomere assembly of a complete human X chromosome. Nature, 2020, 585, 79-84.	13.7	549
5	Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nature Reviews Cancer, 2013, 13, 497-510.	12.8	490
6	Nanopore native RNA sequencing of a human poly(A) transcriptome. Nature Methods, 2019, 16, 1297-1305.	9.0	411
7	Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nature Structural and Molecular Biology, 2011, 18, 867-874.	3.6	340
8	Targeted nanopore sequencing with Cas9-guided adapter ligation. Nature Biotechnology, 2020, 38, 433-438.	9.4	286
9	Beyond mass spectrometry, the next step in proteomics. Science Advances, 2020, 6, eaax8978.	4.7	208
10	Complete genomic and epigenetic maps of human centromeres. Science, 2022, 376, eabl4178.	6.0	204
11	Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors. Genome Medicine, 2014, 6, 61.	3.6	170
12	Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED. Nature Biotechnology, 2021, 39, 431-441.	9.4	160
13	From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science, 2022, 376, eabk3112.	6.0	146
14	Nucleic acid and protein mass mapping by live-cell deep-ultraviolet microscopy. Nature Methods, 2007, 4, 567-569.	9.0	144
15	Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nature Methods, 2020, 17, 1191-1199.	9.0	133
16	Nanopore sequencing detects structural variants in cancer. Cancer Biology and Therapy, 2016, 17, 246-253.	1.5	130
17	Segmental duplications and their variation in a complete human genome. Science, 2022, 376, eabj6965.	6.0	130
18	Epigenetic patterns in a complete human genome. Science, 2022, 376, eabj5089.	6.0	118

#	Article	IF	CITATIONS
19	Laser-Guided Assembly of Heterotypic Three-Dimensional Living Cell Microarrays. Biophysical Journal, 2006, 91, 3465-3473.	0.2	99
20	Enhanced sensitivity to IGF-II signaling links loss of imprinting of <i>IGF2</i> to increased cell proliferation and tumor risk. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20926-20931.	3.3	97
21	Live cell lithography: Using optical tweezers to create synthetic tissue. Lab on A Chip, 2008, 8, 2174.	3.1	89
22	High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. GigaScience, 2020, 9, .	3.3	83
23	Nanopore Sequencing: Electrical Measurements of the Code of Life. IEEE Nanotechnology Magazine, 2010, 9, 281-294.	1.1	81
24	The full-length transcriptome of <i>C. elegans</i> using direct RNA sequencing. Genome Research, 2020, 30, 299-312.	2.4	77
25	DNA Base-Calling from a Nanopore Using a Viterbi Algorithm. Biophysical Journal, 2012, 102, L37-L39.	0.2	75
26	Optimal optical trap for bacterial viability. Physical Review E, 2008, 78, 021910.	0.8	73
27	Targeted DNA methylation in human cells using engineered dCas9-methyltransferases. Scientific Reports, 2017, 7, 6732.	1.6	73
28	Comprehensive analysis of structural variants in breast cancer genomes using single-molecule sequencing. Genome Research, 2020, 30, 1258-1273.	2.4	72
29	Single-molecule, full-length transcript sequencing provides insight into the extreme metabolism of the ruby-throated hummingbird Archilochus colubris. GigaScience, 2018, 7, 1-12.	3.3	67
30	A Reference Genome Sequence for Giant Sequoia. G3: Genes, Genomes, Genetics, 2020, 10, 3907-3919.	0.8	67
31	Cell-Cycle-Dependent ERK Signaling Dynamics Direct Fate Specification in the Mammalian Preimplantation Embryo. Developmental Cell, 2020, 55, 328-340.e5.	3.1	66
32	Applying Rapid Whole-Genome Sequencing To Predict Phenotypic Antimicrobial Susceptibility Testing Results among Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	62
33	Direct detection of RNA modifications and structure using single-molecule nanopore sequencing. Cell Genomics, 2022, 2, 100097.	3.0	55
34	Nanoelectromechanics of Methylated DNA in a Synthetic Nanopore. Biophysical Journal, 2009, 96, L32-L34.	0.2	54
35	Antibiotic pressure on the acquisition and loss of antibiotic resistance genes in Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 2018, 73, 1796-1803.	1.3	44
36	Epigenetic Changes Induced by <i>Bacteroides fragilis</i> Toxin. Infection and Immunity, 2019, 87, .	1.0	43

#	Article	IF	Citations
37	A new link between epigenetic progenitor lesions in cancer and the dynamics of signal transduction. Cell Cycle, 2009, 8, 383-390.	1.3	33
38	Transmission and clearance of potential procarcinogenic bacteria during fecal microbiota transplantation for recurrent Clostridioides difficile. JCI Insight, 2019, 4, .	2.3	32
39	Jamming prokaryotic cell-to-cell communications in a model biofilm. Lab on A Chip, 2009, 9, 925-934.	3.1	31
40	Genomic diversity of SARS-CoV-2 during early introduction into the Baltimore–Washington metropolitan area. JCI Insight, 2021, 6, .	2.3	31
41	Whole genome DNA methylation sequencing of the chicken retina, cornea and brain. Scientific Data, 2017, 4, 170148.	2.4	29
42	Presence of Human Hepegivirus-1 in a Cohort of People Who Inject Drugs. Annals of Internal Medicine, 2017, 167, 1.	2.0	28
43	Successful Treatment of Persistent Burkholderia cepacia Complex Bacteremia with Ceftazidime-Avibactam. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	28
44	PRINCESS: comprehensive detection of haplotype resolved SNVs, SVs, and methylation. Genome Biology, 2021, 22, 268.	3.8	28
45	Assembled and annotated 26.5 Gbp coast redwood genome: a resource for estimating evolutionary adaptive potential and investigating hexaploid origin. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	28
46	The relentless march of the MOSFET gate oxide thickness to zero. Microelectronics Reliability, 2000, 40, 557-562.	0.9	27
47	Identification of Essential Genes and Fluconazole Susceptibility Genes in <i>Candida glabrata</i> by Profiling <i>Hermes</i> Transposon Insertions. G3: Genes, Genomes, Genetics, 2020, 10, 3859-3870.	0.8	27
48	The American lobster genome reveals insights on longevity, neural, and immune adaptations. Science Advances, 2021, 7, .	4.7	27
49	Chromosome-specific telomere lengths and the minimal functional telomere revealed by nanopore sequencing. Genome Research, 2022, 32, 616-628.	2.4	25
50	Electrical simulation of scanning capacitance microscopy imaging of the pn junction with semiconductor probe tips. Applied Physics Letters, 1999, 74, 3672-3674.	1.5	24
51	Using a nanopore for single molecule detection and single cell transfection. Analyst, The, 2012, 137, 3020.	1.7	23
52	Characterization of human telomerase reverse transcriptase promoter methylation and transcription factor binding in differentiated thyroid cancer cell lines. Genes Chromosomes and Cancer, 2019, 58, 530-540.	1.5	21
53	A plasmid locus associated with Klebsiella clinical infections encodes a microbiome-dependent gut fitness factor. PLoS Pathogens, 2021, 17, e1009537.	2.1	20
54	Chemical and photochemical error rates in light-directed synthesis of complex DNA libraries. Nucleic Acids Research, 2021, 49, 6687-6701.	6.5	20

#	Article	IF	CITATIONS
55	<i>De novo</i> genome assembly of the tobacco hornworm moth (<i>Manduca sexta)</i> Genes, Genemes, Genetics, 2021, 11, .	0.8	20
56	Molecular diagnostics for personal medicine using a nanopore. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 367-381.	3.3	18
57	Think Small: Nanopores for Sensing and Synthesis. IEEE Access, 2014, 2, 1396-1408.	2.6	18
58	Metagenomic next-generation sequencing of rectal swabs for the surveillance of antimicrobial-resistant organisms on the Illumina Miseq and Oxford MinION platforms. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 95-102.	1.3	16
59	Characterization of Allele-Specific Regulation of Telomerase Reverse Transcriptase in Promoter Mutant Thyroid Cancer Cell Lines. Thyroid, 2020, 30, 1470-1481.	2.4	14
60	Chapter 14 Electron Microscopy of Hydrated Samples. Methods in Cell Biology, 2008, 89, 391-407.	0.5	13
61	MiR-203a is differentially expressed during branching morphogenesis and EMT in breast progenitor cells and is a repressor of peroxidasin. Mechanisms of Development, 2019, 155, 34-47.	1.7	13
62	Epigenetically regulated digital signaling defines epithelial innate immunity at the tissue level. Nature Communications, 2021, 12, 1836.	5.8	13
63	Wet electron microscopy with quantum dots. BioTechniques, 2006, 41, 295-298.	0.8	11
64	First Draft Genome Sequence of the Pathogenic Fungus <i>Lomentospora prolificans</i> (Formerly) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf :
65	Subcloning induces changes in the DNAâ€methylation pattern of outgrowing Chinese hamster ovary cell colonies. Biotechnology Journal, 2021, 16, e2000350.	1.8	11
66	Subcloning induces changes in the DNAâ€methylation pattern of outgrowing Chinese hamster ovary cell colonies. Biotechnology Journal, 2021, 16, e2000350. A Loss of Epigenetic Control Can Promote Cell Death through Reversing the Balance of Pathways in a Signaling Network. Molecular Cell, 2018, 72, 60-70.e3.	1.8	10
	cell colonies. Biotechnology Journal, 2021, 16, e2000350. A Loss of Epigenetic Control Can Promote Cell Death through Reversing the Balance of Pathways in a		
66	cell colonies. Biotechnology Journal, 2021, 16, e2000350. A Loss of Epigenetic Control Can Promote Cell Death through Reversing the Balance of Pathways in a Signaling Network. Molecular Cell, 2018, 72, 60-70.e3. Protein engineering strategies for improving the selective methylation of target CpG sites by a	4.5	10
66	cell colonies. Biotechnology Journal, 2021, 16, e2000350. A Loss of Epigenetic Control Can Promote Cell Death through Reversing the Balance of Pathways in a Signaling Network. Molecular Cell, 2018, 72, 60-70.e3. Protein engineering strategies for improving the selective methylation of target CpG sites by a dCas9-directed cytosine methyltransferase in bacteria. PLoS ONE, 2018, 13, e0209408. Plasma virome and the risk of blood-borne infection in persons with substance use disorder. Nature	4.5	10
66 67 68	A Loss of Epigenetic Control Can Promote Cell Death through Reversing the Balance of Pathways in a Signaling Network. Molecular Cell, 2018, 72, 60-70.e3. Protein engineering strategies for improving the selective methylation of target CpG sites by a dCas9-directed cytosine methyltransferase in bacteria. PLoS ONE, 2018, 13, e0209408. Plasma virome and the risk of blood-borne infection in persons with substance use disorder. Nature Communications, 2021, 12, 6909. Long read mitochondrial genome sequencing using Cas9-guided adaptor ligation. Mitochondrion,	4.5 1.1 5.8	10 9 8
66 67 68	A Loss of Epigenetic Control Can Promote Cell Death through Reversing the Balance of Pathways in a Signaling Network. Molecular Cell, 2018, 72, 60-70.e3. Protein engineering strategies for improving the selective methylation of target CpG sites by a dCas9-directed cytosine methyltransferase in bacteria. PLoS ONE, 2018, 13, e0209408. Plasma virome and the risk of blood-borne infection in persons with substance use disorder. Nature Communications, 2021, 12, 6909. Long read mitochondrial genome sequencing using Cas9-guided adaptor ligation. Mitochondrion, 2022, 65, 176-183. Epigenetic Memory Emerging from Integrated Transcription Bursts. Biophysical Journal, 2013, 105,	4.5 1.1 5.8	10 9 8

#	Article	IF	Citations
73	Current State of and Future Opportunities for Prediction in Microbiome Research: Report from the Mid-Atlantic Microbiome Meet-up in Baltimore on 9 January 2019. MSystems, 2019, 4, .	1.7	6
74	Epigenetic comparison of CHO hosts and clones reveals divergent methylation and transcription patterns across lineages. Biotechnology and Bioengineering, 2022, 119, 1062-1076.	1.7	6
75	Multi-ancestry fine mapping of interferon lambda and the outcome of acute hepatitis C virus infection. Genes and Immunity, 2020, 21, 348-359.	2.2	5
76	A framework for assessing 16S rRNA marker-gene survey data analysis methods using mixtures Microbiome, 2020, 8, 35.	4.9	2
77	Ecology of a Simple Synthetic Biofilm. Biological and Medical Physics Series, 2015, , 205-226.	0.3	1
78	Genome and transcriptome of a pathogenic yeast, <i>Candida nivariensis</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	1
79	Discriminating Bases by Stretching Double-Stranded DNA in a Nanopore. Biophysical Journal, 2010, 98, 599a.	0.2	0
80	Nanopore Sequencing using a Hidden Markov Model for Base-Calling. Biophysical Journal, 2013, 104, 211a.	0.2	0
81	Third Generation DNA Sequencing with a Nanopore. , 2011, , 287-311.		О