Yoshihisa Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8178457/publications.pdf

Version: 2024-02-01

471509 526287 74 935 17 27 citations h-index g-index papers 76 76 76 455 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Quick Fabrication of Gigantic Single-Crystalline Colloidal Crystals for Photonic Crystal Applications. Japanese Journal of Applied Physics, 2001, 40, L1226-L1228.	1.5	76
2	Observation of the concentration distribution around a growing lysozyme crystal. Journal of Crystal Growth, 1994, 141, 419-424.	1.5	65
3	Interferometric study on the crystal growth of tetragonal lysozyme crystal. Journal of Crystal Growth, 1996, 166, 904-908.	1.5	48
4	Crystal Growth of Hen Egg White Lysozyme under High Pressure. Japanese Journal of Applied Physics, 1994, 33, L1568-L1570.	1.5	45
5	Solubility of α-amino acids in water under high pressure: glycine, l-alanine, l-valine, l-leucine, and l-isoleucine. Fluid Phase Equilibria, 2002, 200, 227-237.	2.5	44
6	Solubility of tetragonal and orthorhombic lysozyme crystals under high pressure. Journal of Crystal Growth, 1999, 196, 204-209.	1.5	39
7	Protein crystallization under high pressure. BBA - Proteins and Proteomics, 2002, 1595, 345-356.	2.1	30
8	Interferometric Observation of the Interfacial Concentration Gradient Layers Around a Lysozyme Crystal. Japanese Journal of Applied Physics, 1993, 32, L1855-L1857.	1.5	29
9	Significant Decrease in the Solubility of Glucose Isomerase Crystals under High Pressure. Crystal Growth and Design, 2002, 2, 321-324.	3.0	29
10	Monte Carlo simulation of crystal-fluid coexistence states in the hard-sphere system under gravity with stepwise control. Journal of Chemical Physics, 2006, 124, 174507.	3.0	26
11	Effects of pressure on growth kinetics of tetragonal lysozyme crystals. Journal of Crystal Growth, 2000, 208, 638-644.	1.5	25
12	Growth rate measurements of lysozyme crystals under microgravity conditions by laser interferometry. Review of Scientific Instruments, 2013, 84, 103707.	1.3	24
13	Effects of high pressure on the growth kinetics of orthorhombic lysozyme crystals. Journal of Crystal Growth, 2003, 254, 188-195.	1.5	22
14	First Direct Observation of Impurity Effects on the Growth Rate of Tetragonal Lysozyme Crystals under Microgravity as Measured by Interferometry. Crystal Growth and Design, 2015, 15, 4787-4794.	3.0	22
15	An interferometric study of the solubility of lysozyme crystals under high pressure. Journal of Crystal Growth, 2000, 209, 1018-1022.	1.5	20
16	Effect of High-Pressure Gas on Yeast Growth. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1365-1371.	1.3	18
17	High-Pressure Acceleration of the Growth Kinetics of Glucose Isomerase Crystals. Journal of Physical Chemistry B, 2005, 109, 3222-3226.	2.6	18
18	First Direct Observation of Elementary Steps on the Surfaces of Glucose Isomerase Crystals under High Pressure. Crystal Growth and Design, 2009, 9, 4289-4295.	3.0	18

#	Article	IF	CITATIONS
19	Colloidal crystallization by a centrifugation method. Journal of Crystal Growth, 2011, 318, 780-783.	1.5	18
20	Shrinking stacking fault through glide of the Shockley partial dislocation in hard-sphere crystal under gravity. Molecular Physics, 2007, 105, 1377-1383.	1.7	16
21	Petit -High Pressure Carbon Dioxide stress increases synthesis of S -Adenosylmethionine and phosphatidylcholine in yeast Saccharomyces cerevisiae. Biophysical Chemistry, 2017, 231, 79-86.	2.8	16
22	In situ measurements of the solubility of crystals under high pressure by an interferometric method. Review of Scientific Instruments, 1998, 69, 2720-2724.	1.3	14
23	Crystal structure of hard spheres under gravity by Monte Carlo simulation. Science and Technology of Advanced Materials, 2006, 7, 296-302.	6.1	13
24	Formation of a crystal of Brownian particles under a uniform external force. Physical Review E, 2013 , 87 , .	2.1	13
25	Characterization of grown-in dislocations in high-quality glucose isomerase crystals by synchrotron monochromatic-beam X-ray topography. Journal of Crystal Growth, 2017, 468, 299-304.	1.5	11
26	Enhancement of Crystallization of Hard Spheres by Gravity: Monte Carlo Simulation. Japanese Journal of Applied Physics, 2005, 44, 5113-5116.	1.5	10
27	Colloidal Crystallization by Centrifugation. Kobunshi Ronbunshu, 2007, 64, 161-165.	0.2	10
28	Disappearance of a Stacking Fault in Hard-Sphere Crystals under Gravity. Progress of Theoretical Physics Supplement, 2009, 178, 33-40.	0.1	10
29	Interplay between elastic fields due to gravity and a partial dislocation for a hard-sphere crystal coherently grown under gravity: driving force for defect disappearance. Molecular Physics, 2010, 108, 1731-1738.	1.7	10
30	Precise characterization of grain structures, stacking disorders, and lattice disorders of a close-packed colloidal crystal. Journal of Crystal Growth, 2011, 322, 109-113.	1.5	10
31	Importance of Determination of Crystal Quality in Protein Crystals when Performing High-Resolution Structural Analysis. Crystal Growth and Design, 2016, 16, 4905-4909.	3.0	10
32	Urea cycle is enhanced by <i>petit</i> -high pressure carbon dioxide stress in yeast <i>Saccharomyces cerevisiae</i> . High Pressure Research, 2017, 37, 70-77.	1.2	9
33	Effects of pressure and temperature on the solubility of monosodium L-glutamate monohydrate in water. High Pressure Research, 2001, 21, 93-104.	1.2	8
34	Enlargement of Grains of Silica Colloidal Crystals by Centrifugation in an Inverted-Triangle Internal-Shaped Container. Japanese Journal of Applied Physics, 2013, 52, 030201.	1.5	8
35	Crystallization of Brownian Particles from Walls Induced by a Uniform External Force. Journal of the Physical Society of Japan, 2013, 82, 084804.	1.6	8
36	Effect of container shape and walls on solidification of Brownian particles in a narrow system. Physical Review E, 2014, 89, 042401.	2.1	8

3

#	Article	IF	Citations
37	Solubility measurements by in situ observation of the apex region formed by the (110), (11ì,,0) and (101) faces of tetragonal lysozyme crystals. Journal of Crystal Growth, 2011, 334, 134-137.	1.5	7
38	Colloidal crystallization utilizing interfaces of unidirectionally growing ice crystals. Journal of Crystal Growth, 2013, 383, 67-71.	1.5	7
39	Ordering of Brownian particles from walls due to an external force. Journal of Crystal Growth, 2014, 401, 87-92.	1.5	7
40	Adsorption, Desorption, Surface Diffusion, Lattice Defect Formation, and Kink Incorporation Processes of Particles on Growth Interfaces of Colloidal Crystals with Attractive Interactions. Crystals, 2016, 6, 80.	2.2	7
41	Succession of stacking disorder in hard-sphere crystal under gravity by Monte Carlo simulation. Fluid Phase Equilibria, 2007, 257, 131-138.	2.5	6
42	Gravitational Annealing of Colloidal Crystals. Defect and Diffusion Forum, 0, 323-325, 555-558.	0.4	6
43	Grand potential formalism of interfacial thermodynamics for critical nucleus. Natural Science, 2013, 05, 631-639.	0.4	6
44	Sterilization of Sudachi Juice by Compressed Oxygen Gas. Journal of the Japanese Society for Food Science and Technology, 2004, 51, 604-612.	0.1	5
45	Removal of Dissolved Oxygen in Sudachi Juice by Nitrogen Gas Pressurization. Journal of the Japanese Society for Food Science and Technology, 2005, 52, 178-182.	0.1	5
46	Monte Carlo simulation of defects in hard-sphere crystal grown on a square pattern. World Journal of Engineering, 2012, 9, 37-44.	1.6	5
47	Possibility of Gravitational Tempering in Colloidal Epitaxy to Obtain a Perfect Crystal. Chemistry Letters, 2012, 41, 1069-1071.	1.3	5
48	Crystallization of Brownian particles in thin systems constrained by walls. Physical Review E, 2014, 90, 032404.	2.1	5
49	Gravitational Tempering in Colloidal Epitaxy To Reduce Defects Further. Crystal Growth and Design, 2014, 14, 2083-2086.	3.0	5
50	Colloidal crystallization on tilted substrates under gravitational fields. Journal of Crystal Growth, 2014, 401, 905-909.	1.5	5
51	In-situ observation of colloidal crystallization. Progress in Crystal Growth and Characterization of Materials, 2016, 62, 413-416.	4.0	5
52	Precipitant-Free Lysozyme Crystals Grown by Centrifugal Concentration Reveal Structural Changes. Crystal Growth and Design, 2018, 18, 4226-4229.	3.0	5
53	Effects of Compressed Hydrocarbon Gases on the Growth Activity of <i>Saccharomyces cerevisiae</i> Bioscience, Biotechnology and Biochemistry, 2010, 74, 1991-1996.	1.3	4
54	Effects of temperature, pressure, and pH on the solubility of triclinic lysozyme crystals. Journal of Crystal Growth, 2011, 318, 1085-1088.	1.5	4

#	Article	IF	Citations
55	Microbial Reduction and Quality Changes in Powdered White and Black Pepper by Treatment with Compressed Oxygen or Carbon Dioxide Gas. Food Science and Technology Research, 2015, 21, 51-57.	0.6	4
56	Correction of the equilibrium temperature caused by slight evaporation of water in protein crystal growth cells during long-term space experiments at International Space Station. Review of Scientific Instruments, 2015, 86, 083704.	1.3	4
57	Control of strain in subgrains of protein crystals by the introduction of grown-in dislocations. Acta Crystallographica Section D: Structural Biology, 2021, 77, 599-605.	2.3	4
58	Activation volume of crystallization and effects of pressure on the three-dimensional nucleation rate of glucose isomerase. High Pressure Research, 2010, 30, 483-489.	1.2	3
59	Design of a standalone-type beryllium vessel for high-pressure protein crystallography. Review of Scientific Instruments, 2010, 81, 084302.	1.3	3
60	First Direct Observation of Elementary Steps on the Surfaces of Glucose Isomerase Crystals under High Pressure. Crystal Growth and Design, 2010, 10, 2020-2020.	3.0	3
61	Identification of triangular-shaped defects often appeared in hard-sphere crystals grown on a square pattern under gravity by Monte Carlo simulations. Physica B: Condensed Matter, 2014, 452, 58-65.	2.7	3
62	Very Low Nucleation Rates of Glucose Isomerase Crystals under Microgravity in the International Space Station. Crystals, 2019, 9, 90.	2.2	3
63	SOLUBILITY MEASUREMENTS OF TETRAGONAL LYSOZYME CRYSTALS. International Journal of Modern Physics B, 2006, 20, 4117-4122.	2.0	2
64	Effects of compressed unsaturated hydrocarbon gases on yeast growth. Annals of the New York Academy of Sciences, 2010, 1189, 121-126.	3.8	2
65	In situ measurements of the solubility of protein crystals under high pressure. Progress in Biotechnology, 2002, , 117-122.	0.2	1
66	Effects of pressure on growth kinetics of protein crystals. Progress in Biotechnology, 2002, 19, 123-130.	0.2	1
67	Effects of high pressure on the step velocity on the $\{110\}$ faces of tetragonal lysozyme crystals. World Journal of Engineering, 2011, 8, 307-312.	1.6	1
68	Vanishing linear term in chemical potential difference in volume term of work of critical nucleus formation for phase transition without volume change. Journal of Crystal Growth, 2013, 375, 16-19.	1.5	1
69	A novel handling-free method of mounting single protein crystals for synchrotron structure analyses at room temperature. Review of Scientific Instruments, 2019, 90, 054101.	1.3	1
70	Thermotolerance and barotolerance of alcohol-shocked yeast. Progress in Biotechnology, 2002, , 325-330.	0.2	0
71	Effects of Gas Pressurization with Ethylene on the Ultrastructure of the YeastSaccharomyces cerevisiae. Bioscience, Biotechnology and Biochemistry, 2011, 75, 790-792.	1.3	0
72	Utilization of Track-etched Membrane Filter for a Crystallization Field and Single-crystal X-ray Diffraction Analysis of Proteins. Bunseki Kagaku, 2019, 68, 639-646.	0.2	0

Yoshihisa Suzuki

#	Article	IF	CITATIONS
73	A Novel Approach to Protein Crystallization: Use of a Magnetic Field and High-Pressure. Seibutsu Butsuri, 2004, 44, 58-63.	0.1	0
74	Precipitant-Free Crystallization of Lysozyme and Glucose Isomerase by Drying. Crystals, 2022, 12, 129.	2.2	0