Fabien Pierrel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8178326/publications.pdf Version: 2024-02-01

FARIEN DIEDDEI

#	Article	IF	CITATIONS
1	Identification and characterization of a noncanonical menaquinone-linked formate dehydrogenase. Journal of Biological Chemistry, 2022, 298, 101384.	3.4	11
2	Recent advances in the metabolic pathways and microbial production of coenzyme Q. World Journal of Microbiology and Biotechnology, 2022, 38, 58.	3.6	15
3	Rational Engineering of Non-Ubiquinone Containing Corynebacterium glutamicum for Enhanced Coenzyme Q10 Production. Metabolites, 2022, 12, 428.	2.9	4
4	Toxoplasma LIPIN is essential in channeling host lipid fluxes through membrane biogenesis and lipid storage. Nature Communications, 2021, 12, 2813.	12.8	17
5	The Biosynthetic Pathway of Ubiquinone Contributes to Pathogenicity of Francisella novicida. Journal of Bacteriology, 2021, 203, e0040021.	2.2	8
6	Advances in bacterial pathways for the biosynthesis of ubiquinone. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148259.	1.0	40
7	The controversy on the ancestral arsenite oxidizing enzyme; deducing evolutionary histories with phylogeny and thermodynamics. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148252.	1.0	4
8	PasT of <i>Escherichia coli</i> sustains antibiotic tolerance and aerobic respiration as a bacterial homolog of mitochondrial Coq10. MicrobiologyOpen, 2020, 9, e1064.	3.0	13
9	The O2-independent pathway of ubiquinone biosynthesis is essential for denitrification in Pseudomonas aeruginosa. Journal of Biological Chemistry, 2020, 295, 9021-9032.	3.4	25
10	Vanillic Acid Restores Coenzyme Q Biosynthesis and ATP Production in Human Cells Lacking <i>COQ6</i> . Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	4.0	35
11	Ubiquinone Biosynthesis over the Entire O ₂ Range: Characterization of a Conserved O ₂ -Independent Pathway. MBio, 2019, 10, .	4.1	34
12	A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone. Cell Chemical Biology, 2019, 26, 482-492.e7.	5.2	46
13	Vitamin K2 cannot substitute Coenzyme Q10 as electron carrier in the mitochondrial respiratory chain of mammalian cells. Scientific Reports, 2019, 9, 6553.	3.3	18
14	The UbiK protein is an accessory factor necessary for bacterial ubiquinone (UQ) biosynthesis and forms a complex with the UQ biogenesis factor UbiJ. Journal of Biological Chemistry, 2017, 292, 11937-11950.	3.4	35
15	Impact of Chemical Analogs of 4-Hydroxybenzoic Acid on Coenzyme Q Biosynthesis: From Inhibition to Bypass of Coenzyme Q Deficiency. Frontiers in Physiology, 2017, 8, 436.	2.8	39
16	Coenzyme Q Biosynthesis: Evidence for a Substrate Access Channel in the FAD-Dependent Monooxygenase Coq6. PLoS Computational Biology, 2016, 12, e1004690.	3.2	10
17	Evolution of Ubiquinone Biosynthesis: Multiple Proteobacterial Enzymes with Various Regioselectivities To Catalyze Three Contiguous Aromatic Hydroxylation Reactions. MSystems, 2016, 1, .	3.8	44
18	Mechanistic Details of Early Steps in Coenzyme Q Biosynthesis Pathway in Yeast. Cell Chemical Biology, 2016, 23, 1241-1250.	5.2	70

FABIEN PIERREL

#	Article	IF	CITATIONS
19	The <i>COQ2</i> genotype predicts the severity of coenzyme Q ₁₀ deficiency. Human Molecular Genetics, 2016, 25, 4256-4265.	2.9	53
20	Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity. Molecular Cell, 2016, 63, 608-620.	9.7	101
21	Demethylmenaquinol is a substrate of Escherichia coli nitrate reductase A (NarGHI) and forms a stable semiquinone intermediate at the NarGHI quinol oxidation site. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 739-747.	1.0	9
22	Coq6 Is Responsible for the C4-deamination Reaction in Coenzyme Q Biosynthesis in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2015, 290, 24140-24151.	3.4	37
23	ubij, a New Gene Required for Aerobic Growth and Proliferation in Macrophage, Is Involved in Coenzyme Q Biosynthesis in Escherichia coli and Salmonella enterica Serovar Typhimurium. Journal of Bacteriology, 2014, 196, 70-79.	2.2	38
24	Biosynthesis and physiology of coenzyme Q in bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1004-1011.	1.0	123
25	Three conserved histidine residues contribute to mitochondrial iron transport through mitoferrins. Biochemical Journal, 2014, 460, 79-92.	3.7	22
26	Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1-6.	3.8	64
27	ubil, a New Gene in Escherichia coli Coenzyme Q Biosynthesis, Is Involved in Aerobic C5-hydroxylation. Journal of Biological Chemistry, 2013, 288, 20085-20092.	3.4	45
28	Overexpression of the Coq8 Kinase in Saccharomyces cerevisiae coq Null Mutants Allows for Accumulation of Diagnostic Intermediates of the Coenzyme Q6 Biosynthetic Pathway. Journal of Biological Chemistry, 2012, 287, 23571-23581.	3.4	84
29	Coenzyme Q Biosynthesis: Coq6 Is Required for the C5-Hydroxylation Reaction and Substrate Analogs Rescue Coq6 Deficiency. Chemistry and Biology, 2011, 18, 1134-1142.	6.0	92
30	Involvement of Mitochondrial Ferredoxin and Para-Aminobenzoic Acid in Yeast Coenzyme Q Biosynthesis. Chemistry and Biology, 2010, 17, 449-459.	6.0	100
31	The Role of Coa2 in Hemylation of Yeast Cox1 Revealed by Its Genetic Interaction with Cox10. Molecular and Cellular Biology, 2010, 30, 172-185.	2.3	41
32	Cytosolic Monothiol Glutaredoxins Function in Intracellular Iron Sensing and Trafficking via Their Bound Iron-Sulfur Cluster. Cell Metabolism, 2010, 12, 373-385.	16.2	263
33	Coa2 Is an Assembly Factor for Yeast Cytochrome <i>c</i> Oxidase Biogenesis That Facilitates the Maturation of Cox1. Molecular and Cellular Biology, 2008, 28, 4927-4939.	2.3	55
34	Isolated Cytochrome c Oxidase Deficiency in G93A SOD1 Mice Overexpressing CCS Protein. Journal of Biological Chemistry, 2008, 283, 12267-12275.	3.4	41
35	Pet191 Is a Cytochrome <i>c</i> Oxidase Assembly Factor in <i>Saccharomyces cerevisiae</i> . Eukaryotic Cell, 2008, 7, 1427-1431.	3.4	26
36	tRNA-modifying MiaE protein from <i>Salmonella typhimurium</i> is a nonheme diiron monooxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13295-13300.	7.1	44

FABIEN PIERREL

#	Article	IF	CITATIONS
37	MiaB, a Bifunctional Radical-S-Adenosylmethionine Enzyme Involved in the Thiolation and Methylation of tRNA, Contains Two Essential [4Fe-4S] Clusters. Biochemistry, 2007, 46, 5140-5147.	2.5	111
38	Coa1 links the Mss51 post-translational function to Cox1 cofactor insertion in cytochrome c oxidase assembly. EMBO Journal, 2007, 26, 4335-4346.	7.8	119
39	Metal Ion availability in mitochondria. BioMetals, 2007, 20, 675-682.	4.1	95
40	Mitochondrial Matrix Copper Complex Used in Metallation of Cytochrome Oxidase and Superoxide Dismutase. Journal of Biological Chemistry, 2006, 281, 36552-36559.	3.4	121
41	Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 759-772.	4.1	249
42	The P174L Mutation in Human Sco1 Severely Compromises Cox17-dependent Metallation but Does Not Impair Copper Binding. Journal of Biological Chemistry, 2006, 281, 12270-12276.	3.4	34
43	MiaB Protein Is a Bifunctional Radical-S-Adenosylmethionine Enzyme Involved in Thiolation and Methylation of tRNA. Journal of Biological Chemistry, 2004, 279, 47555-47563.	3.4	149
44	MiaB Protein from Thermotoga maritima. Journal of Biological Chemistry, 2003, 278, 29515-29524.	3.4	59
45	Enzymatic Modification of tRNAs. Journal of Biological Chemistry, 2002, 277, 13367-13370.	3.4	98
46	A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone. SSRN Electronic Journal, 0, , .	0.4	0