List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8177385/publications.pdf Version: 2024-02-01

		36303	48315
111	8,390	51	88
papers	citations	h-index	g-index
111		111	9640
111	111	111	0042
all docs	docs citations	times ranked	citing authors

LIANIMIN

#	Article	IF	CITATIONS
1	Different surface modification methods and coating materials of zinc metal anode. Journal of Energy Chemistry, 2022, 66, 397-412.	12.9	110
2	New Insight on K ₂ Zn ₂ V ₁₀ O ₂₈ as an Advanced Cathode for Rechargeable Aqueous Zincâ€lon Batteries. Small, 2022, 18, e2107102.	10.0	57
3	Highâ€Voltage Electrolyte Chemistry for Lithium Batteries. Small Science, 2022, 2, .	9.9	66
4	Dendritesâ€Free Lithium Metal Anode Enabled by Synergistic Surface Structural Engineering. Advanced Functional Materials, 2022, 32, .	14.9	22
5	Structural regulation chemistry of lithium ion solvation for lithium batteries. EcoMat, 2022, 4, .	11.9	45
6	Additiveâ€Assisted Hydrophobic Li ⁺ â€Solvated Structure for Stabilizing Dual Electrode Electrolyte Interphases through Suppressing LiPF ₆ Hydrolysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	45
7	Li ₂ CO ₃ /LiFâ€Rich Heterostructured Solid Electrolyte Interphase with Superior Lithiophilic and Li ⁺ â€Transferred Characteristics via Adjusting Electrolyte Additives. Advanced Energy Materials, 2022, 12, .	19.5	125
8	Separatorâ€Wetted, Acid―and Waterâ€Scavenged Electrolyte with Optimized Liâ€Ion Solvation to Form Dual Efficient Electrode Electrolyte Interphases via Hexaâ€Functional Additive. Advanced Science, 2022, 9, e2201297.	11.2	25
9	Research progress on ZnSe and ZnTe anodes for rechargeable batteries. Nanoscale, 2022, 14, 9609-9635.	5.6	15
10	Pseudo-concentrated electrolytes for lithium metal batteries. EScience, 2022, 2, 557-565.	41.6	51
11	Stabilization Perspective on Metal Anodes for Aqueous Batteries. Advanced Energy Materials, 2021, 11, 2000962.	19.5	106
12	Dependence of electromagnetic wave absorption properties on the topography of Ni anchoring on reduced graphene oxide. Chinese Chemical Letters, 2021, 32, 870-874.	9.0	15
13	Electrolytes Enriched by Crown Ethers for Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2002578.	14.9	101
14	Transition metal carbides in electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2021, 32, 291-298.	9.0	91
15	Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors. Rare Metals, 2021, 40, 353-373.	7.1	81
16	Gradient Solid Electrolyte Interphase and Lithiumâ€lon Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 6600-6608.	13.8	249
17	Green, cheap and rechargeable Al–N2 battery with efficient N2 fixation. Rare Metals, 2021, 40, 1-2	7.1	4
18	Gradient Solid Electrolyte Interphase and Lithiumâ€ion Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 6674-6682.	2.0	23

#	Article	IF	CITATIONS
19	Phosphonium Bromides Regulating Solid Electrolyte Interphase Components and Optimizing Solvation Sheath Structure for Suppressing Lithium Dendrite Growth. Advanced Functional Materials, 2021, 31, 2009013.	14.9	75
20	Nonsolvent-induced phase separation-derived TiO2 nanotube arrays/porous Ti electrode as high-energy-density anode for lithium-ion batteries. Rare Metals, 2021, 40, 393-399.	7.1	25
21	Design of double-shell TiO2@SnO2 nanotubes via atomic layer deposition for improved lithium storage. CrystEngComm, 2021, 23, 2992-3001.	2.6	4
22	An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale, 2021, 13, 2378-2388.	5.6	141
23	Recent advance in single-atom catalysis. Rare Metals, 2021, 40, 767-789.	7.1	116
24	Uniform and dendrite-free zinc deposition enabled by <i>in situ</i> formed AgZn ₃ for the zinc metal anode. Journal of Materials Chemistry A, 2021, 9, 8452-8461.	10.3	121
25	Revealing the degradation mechanism of Ni-rich cathode materials after ambient storage and related regeneration method. Journal of Materials Chemistry A, 2021, 9, 3995-4006.	10.3	51
26	Perspective on High oncentration Electrolytes for Lithium Metal Batteries. Small Structures, 2021, 2, 2000122.	12.0	81
27	Co/N-doped carbon nanotube arrays grown on 2D MOFs-derived matrix for boosting the oxygen reduction reaction in alkaline and acidic media. Chinese Chemical Letters, 2021, 32, 816-821.	9.0	39
28	Roadmap on Ionic Liquid Electrolytes for Energy Storage Devices. Chemistry - an Asian Journal, 2021, 16, 549-562.	3.3	36
29	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	2.8	158
30	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	4.2	57
31	Synergistic Effects of Tungsten Doping and Sulfur Vacancies in MoS ₂ on Enhancement of Hydrogen Evolution. Journal of Physical Chemistry C, 2021, 125, 11369-11379.	3.1	17
32	Hexafluoroisopropyl Trifluoromethanesulfonateâ€Driven Easily Li ⁺ Desolvated Electrolyte to Afford Li NCM811 Cells with Efficient Anode/Cathode Electrolyte Interphases. Advanced Functional Materials, 2021, 31, 2104395.	14.9	74
33	Gas sensing materials roadmap. Journal of Physics Condensed Matter, 2021, 33, 303001.	1.8	49
34	Unveiling the Role of Li ⁺ Solvation Structures with Commercial Carbonates in the Formation of Solid Electrolyte Interphase for Lithium Metal Batteries. Small Methods, 2021, 5, e2100441.	8.6	42
35	Highâ€Performance Cathode Materials for Potassiumâ€lon Batteries: Structural Design and Electrochemical Properties. Advanced Materials, 2021, 33, e2100409.	21.0	48
36	Optimizing Electrode/Electrolyte Interphases and Liâ€ion Flux/Solvation for Lithiumâ€Metal Batteries with Quaâ€Functional Heptafluorobutyric Anhydride. Angewandte Chemie, 2021, 133, 20885-20890.	2.0	17

#	Article	IF	CITATIONS
37	Optimizing Electrode/Electrolyte Interphases and Liâ€lon Flux/Solvation for Lithiumâ€Metal Batteries with Quaâ€Functional Heptafluorobutyric Anhydride. Angewandte Chemie - International Edition, 2021, 60, 20717-20722.	13.8	175
38	Diethyl phenylphosphonite contributing to solid electrolyte interphase and cathode electrolyte interphase for lithium metal batteries. Journal of Energy Chemistry, 2021, 63, 566-573.	12.9	13
39	Liquid Alloying Na–K for Sodium Metal Anodes. Journal of Physical Chemistry Letters, 2021, 12, 9321-9327.	4.6	9
40	Fire/heat-resistant, anti-corrosion and folding Ti ₂ C ₃ T _{<i>x</i>} MXene/single-walled carbon nanotube films for extreme-environmental EMI shielding and solar-thermal conversion applications. Journal of Materials Chemistry C, 2021, 9, 10425-10434.	5.5	45
41	Perspective on solidâ€electrolyte interphase regulation for lithium metal batteries. SmartMat, 2021, 2, 5-11.	10.7	58
42	High-efficiency electromagnetic interference shielding capability of magnetic Ti ₃ C ₂ T _{<i>x</i>} MXene/CNT composite film. Journal of Materials Chemistry A, 2021, 9, 24560-24570.	10.3	68
43	In Situ Electrochemical Activation Derived Li <i>_x</i> MoO <i>_y</i> Nanorods as the Multifunctional Interlayer for Fast Kinetics Liâ€5 batteries. Small, 2021, 17, e2104613.	10.0	12
44	Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond. Journal of Materials Chemistry A, 2021, 10, 50-88.	10.3	44
45	Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy. Chemical Engineering Journal, 2020, 379, 122402.	12.7	120
46	Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chemical Engineering Journal, 2020, 379, 122261.	12.7	90
47	Perspectives in emerging bismuth electrochemistry. Chemical Engineering Journal, 2020, 381, 122558.	12.7	103
48	Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chemical Engineering Journal, 2020, 391, 123489.	12.7	51
49	Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chinese Chemical Letters, 2020, 31, 583-588.	9.0	144
50	Interface engineering in transition metal carbides for electrocatalytic hydrogen generation and nitrogen fixation. Materials Horizons, 2020, 7, 32-53.	12.2	61
51	Porous surfur-doped hard carbon for excellent potassium storage. Chinese Chemical Letters, 2020, 31, 223-226.	9.0	44
52	Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chinese Chemical Letters, 2020, 31, 217-222.	9.0	99
53	Electrospun Sb2Se3@C nanofibers with excellent lithium storage properties. Chinese Chemical Letters, 2020, 31, 909-914.	9.0	40
54	Necklace-like carbon nanofibers encapsulating V ₃ S ₄ microspheres for ultrafast and stable potassium-ion storage. Journal of Materials Chemistry A, 2020, 8, 2618-2626.	10.3	87

#	Article	IF	CITATIONS
55	Ultrathin Pd-based nanosheets: syntheses, properties and applications. Nanoscale, 2020, 12, 4219-4237.	5.6	49
56	Recent advances in alloy-based anode materials for potassium ion batteries. Rare Metals, 2020, 39, 970-988.	7.1	68
57	Precise tuning of heteroatom positions in polycyclic aromatic hydrocarbons for electrocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2020, 580, 623-629.	9.4	4
58	Recent progress on FeS2 as anodes for metal-ion batteries. Rare Metals, 2020, 39, 1239-1255.	7.1	77
59	2020 Roadmap on Zinc Metal Batteries. Chemistry - an Asian Journal, 2020, 15, 3696-3708.	3.3	26
60	Electrolytes for Lithium―and Sodiumâ€Metal Batteries. Chemistry - an Asian Journal, 2020, 15, 3584-3598.	3.3	28
61	Selfâ€Regulating Organic Polymer Coupled with Enlarged Inorganic SnS ₂ Interlamellar Composite for Potassium Ion Batteries. Advanced Functional Materials, 2020, 30, 2005080.	14.9	30
62	Recent progresses on SnO ₂ anode materials for sodium storage. Journal Physics D: Applied Physics, 2020, 53, 353001.	2.8	18
63	Atomically thin mesoporous NiCo2O4 grown on holey graphene for enhanced pseudocapacitive energy storage. Journal of Materials Chemistry A, 2020, 8, 13443-13451.	10.3	25
64	Research progress on hybrid organic–inorganic perovskites for photo-applications. Chinese Chemical Letters, 2020, 31, 3055-3064.	9.0	52
65	Ru-doped phosphorene for electrochemical ammonia synthesis. Rare Metals, 2020, 39, 874-880.	7.1	52
66	2020 Roadmap on Carbon Materials for Energy Storage and Conversion. Chemistry - an Asian Journal, 2020, 15, 995-1013.	3.3	154
67	Engineering of Polyanion Type Cathode Materials for Sodiumâ€lon Batteries: Toward Higher Energy/Power Density. Advanced Functional Materials, 2020, 30, 2000473.	14.9	117
68	Rhenium Diselenide Anchored on Reduced Graphene Oxide as Anode with Cyclic Stability for Potassiumâ€ l on Battery. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900329.	2.4	18
69	Antimony―and Bismuthâ€Based Chalcogenides for Sodiumâ€Ion Batteries. Chemistry - an Asian Journal, 2019, 14, 2925-2937.	3.3	46
70	Recent advances in cathode materials for rechargeable lithium–sulfur batteries. Nanoscale, 2019, 11, 15418-15439.	5.6	125
71	Fe1-S/reduced graphene oxide composite as anode material for aqueous rechargeable Ni/Fe batteries. Journal of Alloys and Compounds, 2019, 800, 99-106.	5.5	13
72	2020 Roadmap on two-dimensional nanomaterials for environmental catalysis. Chinese Chemical Letters, 2019, 30, 2065-2088.	9.0	90

#	Article	IF	CITATIONS
73	2020 roadmap on two-dimensional materials for energy storage and conversion. Chinese Chemical Letters, 2019, 30, 2053-2064.	9.0	140
74	Zn-Doped Cu(100) facet with efficient catalytic ability for the CO ₂ electroreduction to ethylene. Physical Chemistry Chemical Physics, 2019, 21, 21341-21348.	2.8	25
75	Fast-response ionogel humidity sensor for real-time monitoring of breathing rate. Materials Chemistry Frontiers, 2019, 3, 484-491.	5.9	43
76	Electron distribution tuning of fluorine-doped carbon for ammonia electrosynthesis. Journal of Materials Chemistry A, 2019, 7, 16979-16983.	10.3	46
77	Mesoporous Carbon oated Bismuth Nanorods as Anode for Potassiumâ€Ion Batteries. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900209.	2.4	47
78	Electrospun Li ₃ V ₂ (PO ₄) ₃ nanocubes/carbon nanofibers as free-standing cathodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14681-14688.	10.3	35
79	ReS ₂ -Based electrode materials for alkali-metal ion batteries. CrystEngComm, 2019, 21, 3755-3769.	2.6	58
80	Fabrication of strong internal electric field ZnS/Fe ₉ S ₁₀ heterostructures for highly efficient sodium ion storage. Journal of Materials Chemistry A, 2019, 7, 11771-11781.	10.3	83
81	Confining ultrasmall bimetallic alloys in porous N–carbon for use as scalable and sustainable electrocatalysts for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 12451-12456.	10.3	128
82	Transition Metalâ€dinitrogen Complex Embedded Graphene for Nitrogen Reduction Reaction. ChemCatChem, 2019, 11, 2821-2827.	3.7	68
83	Preparation of mesoporous ZnAl2O4 nanoflakes by ion exchange from a Na-dawsonite parent material in the presence of an ionic liquid. RSC Advances, 2019, 9, 11894-11900.	3.6	4
84	Sodium-based batteries: from critical materials to battery systems. Journal of Materials Chemistry A, 2019, 7, 9406-9431.	10.3	199
85	Well-defined monodisperse mesoporous TiNb6O17 microspheres for use in high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2019, 787, 344-351.	5.5	16
86	Enhancing thermal oxidation and fire resistance of reduced graphene oxide by phosphorus and nitrogen co-doping: Mechanism and kinetic analysis. Carbon, 2019, 146, 650-659.	10.3	90
87	Lithiophilic NiO hexagonal plates decorated Ni collector guiding uniform lithium plating for stable lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 24262-24270.	10.3	44
88	2020 roadmap on pore materials for energy and environmental applications. Chinese Chemical Letters, 2019, 30, 2110-2122.	9.0	75
89	α-Fe2O3 hollow microspheres assembled by ultra-thin nanoflakes exposed with (241) high-index facet: Solvothermal synthesis, lithium storage performance, and superparamagnetic property. International Journal of Hydrogen Energy, 2019, 44, 1070-1077.	7.1	8
90	A cathode for Li-ion batteries made of vanadium oxide on vertically aligned carbon nanotube arrays/graphene foam. Chemical Engineering Journal, 2019, 359, 1668-1676.	12.7	25

#	Article	IF	CITATIONS
91	Electrospun Nb-doped LiNi _{0.4} Co _{0.2} Mn _{0.4} O ₂ nanobelts for lithium-ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 1126-1132.	6.0	28
92	Research progress on vanadium-based cathode materials for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 8815-8838.	10.3	161
93	Oxygen-deficient anatase TiO ₂ @C nanospindles with pseudocapacitive contribution for enhancing lithium storage. Journal of Materials Chemistry A, 2018, 6, 4013-4022.	10.3	206
94	Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries. Journal of Materials Chemistry A, 2018, 6, 10918-10925.	10.3	199
95	Quasi-reversible conversion reaction of CoSe ₂ /nitrogen-doped carbon nanofibers towards long-lifetime anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 7088-7098.	10.3	117
96	A free-standing Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ /MWCNT framework for high-energy lithium-ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 3053-3060.	6.0	10
97	Controlling the morphology, size and phase of Nb2O5 crystals for high electrochemical performance. Chinese Chemical Letters, 2018, 29, 1785-1790.	9.0	56
98	Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12185-12214.	10.3	245
99	Strong anchoring effect of ferric chloride-graphite intercalation compounds (FeCl ₃ -GICs) with tailored epoxy groups for high-capacity and stable lithium storage. Journal of Materials Chemistry A, 2018, 6, 17982-17993.	10.3	35
100	Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 13790-13796.	10.3	144
101	Synthesis of electrocatalytically functional carbon honeycombs through cooking with molecule precursors. International Journal of Hydrogen Energy, 2017, 42, 6472-6481.	7.1	15
102	Copper-substituted Na _{0.67} Ni _{0.3â^'x} Cu _x Mn _{0.7} O ₂ cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. Journal of Materials Chemistry A. 2017. 5. 8752-8761.	10.3	272
103	Atomic layer deposition of ZnO onto Fe 2 O 3 nanoplates for enhanced H 2 S sensing. Journal of Alloys and Compounds, 2017, 698, 336-340.	5.5	65
104	Filling the oxygen vacancies in Co ₃ O ₄ with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy and Environmental Science, 2017, 10, 2563-2569.	30.8	859
105	Urchin-like hierarchical H-Nb ₂ O ₅ microspheres: synthesis, formation mechanism and their applications in lithium ion batteries. Dalton Transactions, 2017, 46, 10935-10940.	3.3	35
106	Improving Li storage through alloying and carbon coating: The case of mixed CoxSny@C. Journal of Alloys and Compounds, 2016, 685, 720-723.	5.5	1
107	Growth of Highly Nitrogen-Doped Amorphous Carbon for Lithium-ion Battery Anode. Electrochimica Acta, 2016, 188, 414-420.	5.2	79
108	Bi2Te3 nanoflowers assembled of defective nanosheets with enhanced thermoelectric performance. Journal of Alloys and Compounds, 2016, 659, 170-177.	5.5	24

#	Article	IF	CITATIONS
109	Systematic investigation on the gas-sensing performance of TiO 2 nanoplate sensors for enhanced detection on toxic gases. Materials Research Bulletin, 2016, 73, 302-307.	5.2	48
110	Facile synthesis of Ge/C nanocomposite as superior battery anode material. Materials Chemistry and Physics, 2015, 168, 6-9.	4.0	15
111	Additiveâ€Assisted Hydrophobic Li ⁺ â€Solvated Structure for Stabilizing Dual Electrode Electrolyte Interphases through Suppressing LiPF ₆ Hydrolysis. Angewandte Chemie, 0, , .	2.0	5