
## Giuseppina Amadoro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8176918/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Dysfunction of Mitochondria in Alzheimer's Disease: ANT and VDAC Interact with Toxic Proteins and Aid to Determine the Fate of Brain Cells. International Journal of Molecular Sciences, 2022, 23, 7722.                            | 4.1  | 14        |
| 2  | A long story for a short peptide: therapeutic efficacy of a cleavage-specific tau antibody. Neural<br>Regeneration Research, 2021, 16, 2417.                                                                                        | 3.0  | 4         |
| 3  | Systemic delivery of a specific antibody targeting the pathological N-terminal truncated tau peptide<br>reduces retinal degeneration in a mouse model of Alzheimer's Disease. Acta Neuropathologica<br>Communications, 2021, 9, 38. | 5.2  | 16        |
| 4  | Nerve Growth Factor-Based Therapy in Alzheimer's Disease and Age-Related Macular Degeneration.<br>Frontiers in Neuroscience, 2021, 15, 735928.                                                                                      | 2.8  | 15        |
| 5  | Role of Oxygen Radicals in Alzheimer's Disease: Focus on Tau Protein. Oxygen, 2021, 1, 96-120.                                                                                                                                      | 5.0  | 5         |
| 6  | Tau Cleavage Contributes to Cognitive Dysfunction in Strepto-Zotocin-Induced Sporadic Alzheimer's<br>Disease (sAD) Mouse Model. International Journal of Molecular Sciences, 2021, 22, 12158.                                       | 4.1  | 18        |
| 7  | Impaired adult neurogenesis is an early event in Alzheimer's disease neurodegeneration, mediated by intracellular Al² oligomers. Cell Death and Differentiation, 2020, 27, 934-948.                                                 | 11.2 | 97        |
| 8  | N-terminal tau truncation in the pathogenesis of Alzheimer's disease (AD): Developing a novel<br>diagnostic and therapeutic approach. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020,<br>1866, 165584.            | 3.8  | 22        |
| 9  | Functional Foods: An Approach to Modulate Molecular Mechanisms of Alzheimer's Disease. Cells, 2020, 9, 2347.                                                                                                                        | 4.1  | 33        |
| 10 | Transient upregulation of translational efficiency in prodromal and early symptomatic Tg2576 mice contributes to Al² pathology. Neurobiology of Disease, 2020, 139, 104787.                                                         | 4.4  | 8         |
| 11 | Passive immunotherapy for N-truncated tau ameliorates the cognitive deficits in two mouse<br>Alzheimer's disease models. Brain Communications, 2020, 2, fcaa039.                                                                    | 3.3  | 29        |
| 12 | Dynamic structural determinants underlie the neurotoxicity of the N-terminal tau 26-44 peptide in<br>Alzheimer's disease and other human tauopathies. International Journal of Biological<br>Macromolecules, 2019, 141, 278-289.    | 7.5  | 16        |
| 13 | The Copper(II)-Assisted Connection between NGF and BDNF by Means of Nerve Growth Factor-Mimicking Short Peptides. Cells, 2019, 8, 301.                                                                                              | 4.1  | 25        |
| 14 | AD-Related N-Terminal Truncated Tau Is Sufficient to Recapitulate In Vivo the Early Perturbations of<br>Human Neuropathology: Implications for Immunotherapy. Molecular Neurobiology, 2018, 55, 8124-8153.                          | 4.0  | 16        |
| 15 | NGF-Dependent Changes in Ubiquitin Homeostasis Trigger Early Cholinergic Degeneration in Cellular and Animal AD-Model. Frontiers in Cellular Neuroscience, 2018, 12, 487.                                                           | 3.7  | 12        |
| 16 | A disease with a sweet tooth: exploring the Warburg effect in Alzheimer's disease. Biogerontology, 2017, 18, 301-319.                                                                                                               | 3.9  | 56        |
| 17 | AMPK is activated early in cerebellar granule cells undergoing apoptosis and influences VADC1 phosphorylation status and activity. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 1069-1078.               | 4.9  | 7         |
| 18 | The Intersection of NGF/TrkA Signaling and Amyloid Precursor Protein Processing in Alzheimer's<br>Disease Neuropathology. International Journal of Molecular Sciences, 2017, 18, 1319.                                              | 4.1  | 56        |

**GIUSEPPINA AMADORO** 

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Frontiers in Cellular Neuroscience, 2017, 11, 68.                                                                | 3.7 | 35        |
| 20 | Extracellular truncated tau causes early presynaptic dysfunction associated with Alzheimer's disease and other tauopathies. Oncotarget, 2017, 8, 64745-64778.                                                               | 1.8 | 49        |
| 21 | Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).<br>Autophagy, 2016, 12, 1-222.                                                                                                  | 9.1 | 4,701     |
| 22 | Glucoseâ€6â€phosphate tips the balance in modulating apoptosis in cerebellar granule cells. FEBS Letters,<br>2015, 589, 651-658.                                                                                            | 2.8 | 11        |
| 23 | Glycolytic enzyme upregulation and numbness of mitochondrial activity characterize the early phase of apoptosis in cerebellar granule cells. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 10-28. | 4.9 | 32        |
| 24 | NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of<br>Parkin and UCHL-1: implications in Alzheimer's disease. Human Molecular Genetics, 2015, 24, 3058-3081.                       | 2.9 | 103       |
| 25 | Morphological and bioenergetic demands underlying the mitophagy in post-mitotic neurons: the<br>pink–parkin pathway. Frontiers in Aging Neuroscience, 2014, 6, 18.                                                          | 3.4 | 62        |
| 26 | P3-052: AN ALZHEIMER'S-LINKED TOXIC NH2-FRAGMENT OF HUMAN TAU AFFECTS THE PARKIN-DRIVEN<br>MITOPHAGY IN PRIMARY HIPPOCAMPAL NEURONS. , 2014, 10, P647-P647.                                                                 |     | 0         |
| 27 | AD-linked, toxic NH2 human tau affects the quality control of mitochondria in neurons.<br>Neurobiology of Disease, 2014, 62, 489-507.                                                                                       | 4.4 | 62        |
| 28 | Extracellular ADP prevents neuronal apoptosis via activation of cell antioxidant enzymes and<br>protection of mitochondrial ANT-1. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1338-1349.                    | 1.0 | 6         |
| 29 | Cerebrospinal Fluid Levels of a 20–22 kDa NH2 Fragment of Human Tau Provide a Novel Neuronal Injury<br>Biomarker in Alzheimer's Disease and Other Dementias. Journal of Alzheimer's Disease, 2014, 42, 211-226.             | 2.6 | 40        |
| 30 | Mitochondrial respiratory chain Complexes I and IV are impaired by β-amyloid via direct interaction and through Complex I-dependent ROS production, respectively. Mitochondrion, 2013, 13, 298-311.                         | 3.4 | 117       |
| 31 | Dissecting the molecular mechanism by which NH2htau and Aî²1-42 peptides impair mitochondrial ANT-1<br>in Alzheimer disease. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 848-860.                            | 1.0 | 16        |
| 32 | Interaction between NH2-tau fragment and AÎ <sup>2</sup> in Alzheimer's disease mitochondria contributes to the synaptic deterioration. Neurobiology of Aging, 2012, 33, 833.e1-833.e25.                                    | 3.1 | 78        |
| 33 | Endogenous AÎ <sup>2</sup> causes cell death via early tau hyperphosphorylation. Neurobiology of Aging, 2011, 32,<br>969-990.                                                                                               | 3.1 | 61        |
| 34 | Nerve growth factor as a paradigm of neurotrophins related to Alzheimer's disease. Developmental<br>Neurobiology, 2010, 70, 372-383.                                                                                        | 3.0 | 73        |
| 35 | A NH2 Tau Fragment Targets Neuronal Mitochondria at AD Synapses: Possible Implications for<br>Neurodegeneration. Journal of Alzheimer's Disease, 2010, 21, 445-470.                                                         | 2.6 | 92        |
| 36 | SP protects cerebellar granule cells against β-amyloid-induced apoptosis by down-regulation and reduced activity of Kv4 potassium channels. Neuropharmacology, 2010, 58, 268-276.                                           | 4.1 | 41        |

GIUSEPPINA AMADORO

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Does the term â€ <sup>~</sup> trophic' actually mean anti-amyloidogenic? The case of NGF. Cell Death and<br>Differentiation, 2010, 17, 1126-1133.                                                                                          | 11.2 | 33        |
| 38 | Apoptosis and in vitro Alzheimer's disease neuronal models. Communicative and Integrative Biology,<br>2009, 2, 163-169.                                                                                                                    | 1.4  | 98        |
| 39 | Involvement of cannabinoid CB1- and CB2-receptors in the modulation of exocrine pancreatic secretion. Pharmacological Research, 2009, 59, 207-214.                                                                                         | 7.1  | 17        |
| 40 | A peptide containing residues 26–44 of tau protein impairs mitochondrial oxidative phosphorylation<br>acting at the level of the adenine nucleotide translocator. Biochimica Et Biophysica Acta -<br>Bioenergetics, 2008, 1777, 1289-1300. | 1.0  | 72        |
| 41 | Identification of a caspase-derived N-terminal tau fragment in cellular and animal Alzheimer's disease<br>models. Molecular and Cellular Neurosciences, 2008, 38, 381-392.                                                                 | 2.2  | 59        |
| 42 | Spontaneous Aggregation and Altered Intracellular Distribution of Endogenous α-Synuclein During<br>Neuronal Apoptosis. Journal of Alzheimer's Disease, 2008, 13, 151-160.                                                                  | 2.6  | 14        |
| 43 | Substance P provides neuroprotection in cerebellar granule cells through Akt and MAPK/Erk<br>activation: Evidence for the involvement of the delayed rectifier potassium current.<br>Neuropharmacology, 2007, 52, 1366-1377.               | 4.1  | 41        |
| 44 | NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2892-2897.                                                | 7.1  | 218       |
| 45 | Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar<br>granule cells. Journal of Neurochemistry, 2005, 92, 1228-1242.                                                                        | 3.9  | 126       |
| 46 | AMPA Receptors Are Modulated by Tachykinins in Rat Cerebellum Neurons. Journal of Neurophysiology, 2005, 94, 2484-2490.                                                                                                                    | 1.8  | 9         |
| 47 | Interaction of Tau with Fe65 links tau to APP. Neurobiology of Disease, 2005, 18, 399-408.                                                                                                                                                 | 4.4  | 35        |
| 48 | Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons. Cell Death and<br>Differentiation, 2004, 11, 217-230.                                                                                               | 11.2 | 72        |
| 49 | Rb binding protein Che-1 interacts with Tau in cerebellar granule neurons. Molecular and Cellular<br>Neurosciences, 2003, 24, 1038-1050.                                                                                                   | 2.2  | 31        |
| 50 | Isolation and characterization of VGF peptides in rat brain. Role of PC1/3 and PC2 in the maturation of VGF precursor. Journal of Neurochemistry, 2002, 81, 565-574.                                                                       | 3.9  | 92        |
| 51 | Transfer of the apoptotic message in sister cultures of cerebellar neurons. NeuroReport, 2001, 12, 2137-2140.                                                                                                                              | 1.2  | 9         |
| 52 | Dopamine transporter gene expression in rat mesencephalic dopaminergic neurons is increased by direct interaction with target striatal cells in vitro. Molecular Brain Research, 1996, 39, 160-166.                                        | 2.3  | 30        |