Peter Ruhdal Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8176878/publications.pdf

Version: 2024-02-01

567281 395702 1,327 33 15 33 citations g-index h-index papers 33 33 33 1438 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Harnessing lactic acid bacteria in synthetic microbial consortia. Trends in Biotechnology, 2022, 40, 8-11.	9.3	11
2	Harnessing cross-resistance – Sustainable nisin production from low-value food side streams using a Lactococcus lactis mutant with higher nisin-resistance obtained after prolonged chlorhexidine exposure. Bioresource Technology, 2022, 348, 126776.	9.6	4
3	Efficient Production of Nisin A from Low-Value Dairy Side Streams Using a Nonengineered Dairy <i>Lactococcus lactis</i> Strain with Low Lactate Dehydrogenase Activity. Journal of Agricultural and Food Chemistry, 2021, 69, 2826-2835.	5.2	11
4	Droplet-Based Microfluidic High Throughput Screening of Corynebacterium glutamicum for Efficient Heterologous Protein Production and Secretion. Frontiers in Bioengineering and Biotechnology, 2021, 9, 668513.	4.1	16
5	Energy Starvation Induces a Cell Cycle Arrest in Escherichia coli by Triggering Degradation of the DnaA Initiator Protein. Frontiers in Molecular Biosciences, 2021, 8, 629953.	3.5	6
6	Purified lactases versus whole-cell lactasesâ€"the winner takes it all. Applied Microbiology and Biotechnology, 2021, 105, 4943-4955.	3.6	5
7	Deciphering the Regulation of the Mannitol Operon Paves the Way for Efficient Production of Mannitol in Lactococcus lactis. Applied and Environmental Microbiology, 2021, 87, e0077921.	3.1	7
8	Food grade microbial synthesis of the butter aroma compound butanedione using engineered and non-engineered Lactococcus lactis. Metabolic Engineering, 2021, 67, 443-452.	7.0	9
9	Harnessing biocompatible chemistry for developing improved and novel microbial cell factories. Microbial Biotechnology, 2020, 13, 54-66.	4.2	8
10	The Expression of NOX From Synthetic Promoters Reveals an Important Role of the Redox Status in Regulating Secondary Metabolism of Saccharopolyspora erythraea. Frontiers in Bioengineering and Biotechnology, 2020, 8, 818.	4.1	3
11	Complete Genome Sequence of Lactococcus lactis subsp. <i>lactis</i> bv. diacetylactis SD96. Microbiology Resource Announcements, 2020, 9, .	0.6	5
12	From Waste to Taste—Efficient Production of the Butter Aroma Compound Acetoin from Low-Value Dairy Side Streams Using a Natural (Nonengineered) <i>Lactococcus lactis</i> Dairy Isolate. Journal of Agricultural and Food Chemistry, 2020, 68, 5891-5899.	5.2	22
13	No more cleaning up -ÂEfficient lactic acid bacteria cell catalysts as a cost-efficient alternative to purified lactase enzymes. Applied Microbiology and Biotechnology, 2020, 104, 6315-6323.	3.6	5
14	Synergy at work: linking the metabolism of two lactic acid bacteria to achieve superior production of 2-butanol. Biotechnology for Biofuels, 2020, 13, 45.	6.2	5
15	Cofactor Engineering Redirects Secondary Metabolism and Enhances Erythromycin Production in <i>Saccharopolyspora erythraea</i> . ACS Synthetic Biology, 2020, 9, 655-670.	3.8	18
16	Harnessing Adaptive Evolution to Achieve Superior Mannitol Production by <i>Lactococcus lactis</i> Using Its Native Metabolism. Journal of Agricultural and Food Chemistry, 2020, 68, 4912-4921.	5.2	9
17	Systems Biology – A Guide for Understanding and Developing Improved Strains of Lactic Acid Bacteria. Frontiers in Microbiology, 2019, 10, 876.	3.5	34
18	Droplet-based microfluidics as a future tool for strain improvement in lactic acid bacteria. FEMS Microbiology Letters, 2018, 365, .	1.8	11

#	Article	IF	CITATIONS
19	Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis. Metabolic Engineering, 2017, 44, 22-29.	7.0	30
20	Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli. PLoS Genetics, 2017, 13, e1006590.	3 . 5	18
21	Draft Genome Sequence of $\langle i \rangle$ Hymenobacter $\langle j \rangle$ sp. Strain AT01-02, Isolated from a Surface Soil Sample in the Atacama Desert, Chile. Genome Announcements, 2016, 4, .	0.8	1
22	Can microbes compete with cows for sustainable protein production - A feasibility study on high quality protein. Scientific Reports, 2016, 6, 36421.	3.3	10
23	Stimulation of acetoin production in metabolically engineered Lactococcus lactis by increasing ATP demand. Applied Microbiology and Biotechnology, 2016, 100, 9509-9517.	3.6	41
24	A novel cell factory for efficient production of ethanol from dairy waste. Biotechnology for Biofuels, 2016, 9, 33.	6.2	59
25	Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol. Metabolic Engineering, 2016, 36, 57-67.	7.0	57
26	Estimating biological elementary flux modes that decompose a flux distribution by the minimal branching property. Bioinformatics, 2014, 30, 3232-3239.	4.1	18
27	Polyamines are essential for virulence in Salmonella enterica serovar Gallinarum despite evolutionary decay of polyamine biosynthesis genes. Veterinary Microbiology, 2014, 170, 144-150.	1.9	20
28	Oxidative Stress at High Temperatures in Lactococcus lactis Due to an Insufficient Supply of Riboflavin. Applied and Environmental Microbiology, 2013, 79, 6140-6147.	3.1	47
29	Rewiring Lactococcus lactis for Ethanol Production. Applied and Environmental Microbiology, 2013, 79, 2512-2518.	3.1	48
30	Metabolic and Transcriptional Response to Cofactor Perturbations in Escherichia coli. Journal of Biological Chemistry, 2010, 285, 17498-17506.	3.4	115
31	The Glycolytic Flux in <i>Escherichia coli</i> Is Controlled by the Demand for ATP. Journal of Bacteriology, 2002, 184, 3909-3916.	2.2	315
32	Expression of Genes Encoding F ₁ -ATPase Results in Uncoupling of Glycolysis from Biomass Production in <i>Lactococcus lactis</i> Applied and Environmental Microbiology, 2002, 68, 4274-4282.	3.1	58
33	Minimal Requirements for Exponential Growth of <i>Lactococcus lactis</i> . Applied and Environmental Microbiology, 1993, 59, 4363-4366.	3.1	301