Mitchell A Watsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8176780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Human Corneal Equivalents Constructed from Cell Lines. Science, 1999, 286, 2169-2172.	12.6	432
2	PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials, 2008, 29, 3960-3972.	11.4	360
3	Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials, 2008, 29, 1147-1158.	11.4	202
4	A Simple, Cross-linked Collagen Tissue Substitute for Corneal Implantation. , 2006, 47, 1869.		184
5	Collagen–phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials, 2009, 30, 1551-1559.	11.4	171
6	Comparison of conjunctival and corneal surface areas in rabbit and human. Current Eye Research, 1988, 7, 483-486.	1.5	159
7	Tissue-Engineered Recombinant Human Collagen-Based Corneal Substitutes for Implantation: Performance of Type I versus Type III Collagen. , 2008, 49, 3887.		116
8	Elevated Serum Levels of Arachidonoyl-lysophosphatidic Acid and Sphingosine 1-Phosphate in Systemic Sclerosis. International Journal of Medical Sciences, 2009, 6, 168-176.	2.5	116
9	Vitamin D Enhances Corneal Epithelial Barrier Function. , 2011, 52, 7359.		116
10	A Collagen-Based Scaffold for a Tissue Engineered Human Cornea: Physical and Physiological Properties. International Journal of Artificial Organs, 2003, 26, 764-773.	1.4	104
11	Growth factor-like phospholipids generated after corneal injury. American Journal of Physiology - Cell Physiology, 1998, 274, C1065-C1074.	4.6	102
12	Artificial Human Corneas. Cornea, 2002, 21, S54-S61.	1.7	102
13	Properties of Porcine and Recombinant Human Collagen Matrices for Optically Clear Tissue Engineering Applications. Biomacromolecules, 2006, 7, 1819-1828.	5.4	81
14	25-Hydroxyvitamin D, cholesterol, and ultraviolet irradiation. Metabolism: Clinical and Experimental, 2008, 57, 741-748.	3.4	79
15	Enhancement of Vitamin D Metabolites in the Eye Following Vitamin D3 Supplementation and UV-B Irradiation. Current Eye Research, 2012, 37, 871-878.	1.5	62
16	Keratocyte gap junctional communication in normal and wounded rabbit corneas and human corneas. Investigative Ophthalmology and Visual Science, 1995, 36, 2568-76.	3.3	61
17	Innervated human corneal equivalents as in vitro models for nerveâ€ŧarget cell interactions. FASEB Journal, 2004, 18, 170-172.	0.5	59
18	In vitro corneal endothelial permeability in rabbit and human: The effects of age, cataract surgery and diabetes. Experimental Eye Research, 1989, 49, 751-767.	2.6	56

MITCHELL A WATSKY

#	Article	IF	CITATIONS
19	Synthetic neoglycopolymer-recombinant human collagen hybrids as biomimetic crosslinking agents in corneal tissue engineering. Biomaterials, 2009, 30, 5403-5408.	11.4	54
20	New Insights into the Mechanism of Fibroblast to Myofibroblast Transformation and Associated Pathologies. International Review of Cell and Molecular Biology, 2010, 282, 165-192.	3.2	53
21	ClC-3 is required for LPA-activated Clâ^' current activity and fibroblast-to-myofibroblast differentiation. American Journal of Physiology - Cell Physiology, 2008, 294, C535-C542.	4.6	50
22	Induction and duration of tonic immobility in the lemon shark, Negaprion brevirostris. Fish Physiology and Biochemistry, 1990, 8, 207-210.	2.3	49
23	LPA and S1P Increase Corneal Epithelial and Endothelial Cell Transcellular Resistance. , 2005, 46, 1927.		47
24	Effect of Vitamin D Receptor Knockout on Cornea Epithelium Wound Healing and Tight Junctions. , 2014, 55, 5245.		45
25	Gap junctional communication in the human corneal endothelium and epithelium. Current Eye Research, 2002, 25, 29-36.	1.5	39
26	Sodium channels in ocular epithelia. Pflugers Archiv European Journal of Physiology, 1991, 419, 454-459.	2.8	36
27	PPIP5K2 and PCSK1 are Candidate Genetic Contributors to Familial Keratoconus. Scientific Reports, 2019, 9, 19406.	3.3	34
28	Chloride channel activity in human lung fibroblasts and myofibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L1110-L1116.	2.9	33
29	Phospholipid Growth Factors and Corneal Wound Healing. Annals of the New York Academy of Sciences, 2000, 905, 142-158.	3.8	30
30	lonic channels in corneal endothelium. American Journal of Physiology - Cell Physiology, 1996, 270, C975-C989.	4.6	28
31	Effects of a low sodium diet on bone metabolism. Journal of Bone and Mineral Metabolism, 2005, 23, 506-513.	2.7	26
32	Vitamin D in Tear Fluid. , 2015, 56, 5880.		26
33	Lysophosphatidic acid, serum, and hyposmolarity activate Cl- currents in corneal keratocytes. American Journal of Physiology - Cell Physiology, 1995, 269, C1385-C1393.	4.6	24
34	Teriparatide is safe and effectively increases bone biomarkers in institutionalized individuals with osteoporosis. Journal of Bone and Mineral Metabolism, 2010, 28, 233-239.	2.7	24
35	Injury-elicited differential transcriptional regulation of phospholipid growth factor receptors in the cornea. American Journal of Physiology - Cell Physiology, 2002, 283, C1646-C1654.	4.6	23
36	Dye spread through gap junctions in the corneal epithelium of the rabbit. Current Eye Research, 1997, 16, 445-452.	1.5	22

MITCHELL A WATSKY

#	Article	IF	CITATIONS
37	Effects of Vitamin D Receptor Knockout on Cornea Epithelium Gap Junctions. , 2014, 55, 2975.		21
38	Receptor-mediated activation of a Cl(-) current by LPA and S1P in cultured corneal keratocytes. Investigative Ophthalmology and Visual Science, 2002, 43, 3202-8.	3.3	20
39	Bicarbonate promotes dye coupling in the epithelium and endothelium of the rabbit cornea. Current Eye Research, 2004, 28, 109-120.	1.5	19
40	Lysophosphatidic acid-activated Cl- current activity in human systemic sclerosis skin fibroblasts. Rheumatology, 2010, 49, 2290-2297.	1.9	19
41	Effects of 1,25 and 24,25 Vitamin D on Corneal Epithelial Proliferation, Migration and Vitamin D Metabolizing and Catabolizing Enzymes. Scientific Reports, 2017, 7, 16951.	3.3	18
42	Corneal endothelial junctions and the effect of ouabain. Investigative Ophthalmology and Visual Science, 1990, 31, 933-41.	3.3	18
43	Pamidronate infusion in patients with systemic sclerosis results in changes in blood mononuclear cell cytokine profiles. Clinical and Experimental Immunology, 2006, 146, 371-380.	2.6	17
44	Effect of tumor necrosis factor alpha on rabbit corneal endothelial permeability. Investigative Ophthalmology and Visual Science, 1996, 37, 1924-9.	3.3	14
45	Resting voltage measurements of the rabbit corneal endothelium using patch-current clamp techniques. Investigative Ophthalmology and Visual Science, 1991, 32, 106-11.	3.3	13
46	Nonselective cation channel activation during wound healing in the corneal endothelium. American Journal of Physiology - Cell Physiology, 1995, 268, C1179-C1185.	4.6	12
47	Dye coupling in the corneal endothelium: effects of ouabain and extracellular calcium removal. Cell and Tissue Research, 1992, 269, 57-63.	2.9	11
48	Effects of Vitamin D Receptor Knockout and Vitamin D Deficiency on Corneal Epithelial Wound Healing and Nerve Density in Diabetic Mice. Diabetes, 2020, 69, 1042-1051.	0.6	11
49	Lysophospholipids and lysophospholipase D in rabbit aqueous humor following corneal injury. Prostaglandins and Other Lipid Mediators, 2012, 97, 83-89.	1.9	10
50	Vitamin D receptor and metabolite effects on corneal epithelial cell gap junction proteins. Experimental Eye Research, 2019, 187, 107776.	2.6	10
51	Influence of Vitamin D on Corneal Epithelial Cell Desmosomes and Hemidesmosomes. , 2019, 60, 4074.		9
52	Characterization of voltage-gated, whole-cell ionic currents from conjunctival epithelial cells. Investigative Ophthalmology and Visual Science, 1998, 39, 351-7.	3.3	9
53	Initial characterization of whole-cell currents from freshly dissociated corneal keratocytes. Current Eye Research, 1992, 11, 127-134.	1.5	8
54	Phorbol ester modulation of rabbit corneal endothelial permeability. Investigative Ophthalmology and Visual Science, 1997, 38, 2649-54.	3.3	7

MITCHELL A WATSKY

#	Article	IF	CITATIONS
55	Ion channel involvement in the temperature-sensitive response of the rabbit corneal endothelial cell resting membrane potential. Journal of Membrane Biology, 1993, 135, 61-71.	2.1	5
56	Polyamines in Cultured Rabbit Corneal Cells. , 2003, 44, 2512.		5
57	Effects of 1,25 and 24,25 Vitamin D on Corneal Fibroblast VDR and Vitamin D Metabolizing and Catabolizing Enzymes. Current Eye Research, 2021, 46, 1271-1282.	1.5	5
58	Loss of keratocyte ion channels during wound healing in the rabbit cornea. Investigative Ophthalmology and Visual Science, 1995, 36, 1095-9.	3.3	5
59	Transient Cell Membrane Disruptions induce Calcium Waves in Corneal Keratocytes. Scientific Reports, 2020, 10, 2840.	3.3	4
60	Intraocular Irrigating Solutions: The Importance of Ca++ and Glass Versus Polypropylene Bottles. International Ophthalmology Clinics, 1993, 33, 109-125.	0.7	3
61	A method for the in vitro determination of feline corneal endothelial permeability. Current Eye Research, 1990, 9, 1129-1136.	1.5	2
62	Association of Vitamin D with Incident Glaucoma: Findings from the Women's Health Initiative. Journal of Investigative Medicine, 2021, 69, 843-850.	1.6	2
63	Epithelial Cell Culture. , 2002, , 131-140.		2
64	Cornea. , 2002, , 927-941.		2
65	Whose Naughty or Nice: Electrophysiological Screening of Cells for Use in Tissue-Engineered Corneas. , 2000, 1, 115-120.		1
66	Tissue Engineered Models for In Vitro Studies. , 2009, , 759-772.		0